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Abstract—Social media has become a major source for analyzing all aspects of daily life. Thanks to dedicated latent topic analysis
methods such as the Ailment Topic Aspect Model (ATAM), public health can now be observed on Twitter. In this work, we are interested
in using social media to monitor people’s health over time. The use of tweets has several benefits including instantaneous data
availability at virtually no cost. Early monitoring of health data is complementary to post-factum studies and enables a range of
applications such as measuring behavioral risk factors and triggering health campaigns. We formulate two problems: health transition
detection and health transition prediction.
We first propose the Temporal Ailment Topic Aspect Model (TM–ATAM), a new latent model dedicated to solving the first problem by
capturing transitions that involve health-related topics. TM–ATAM is a non-obvious extension to ATAM that was designed to extract
health-related topics. It learns health-related topic transitions by minimizing the prediction error on topic distributions between
consecutive posts at different time and geographic granularities. To solve the second problem, we develop T–ATAM, a Temporal Ailment
Topic Aspect Model where time is treated as a random variable natively inside ATAM.
Our experiments on an 8-month corpus of tweets show that TM–ATAM outperforms TM–LDA in estimating health-related transitions
from tweets for different geographic populations. We examine the ability of TM–ATAM to detect transitions due to climate conditions in
different geographic regions. We then show how T–ATAM can be used to predict the most important transition and additionally compare
T–ATAM with CDC (Center for Disease Control) data and Google Flu Trends.

Index Terms—Public health, Ailments, Social media, Topic models.
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1 INTRODUCTION

Social media has become a major source of information for
analyzing all aspects of daily life. In particular, Twitter is
used for public health monitoring to extract early indicators
of the well-being of populations in different geographic
regions. Twitter has become a major source of data for early
monitoring and prediction in areas such as health [1], disaster
management [2] and politics [3]. In the health domain,
the ability to model transitions for ailments and detect
statements like “people talk about smoking and cigarettes
before talking about respiratory problems”, or “people talk
about headaches and stomach ache in any order”, benefits
syndromic surveillance and helps measure behavioral risk
factors and trigger public health campaigns. In this paper,
we formulate two problems: the health transition detection
problem and the health transition prediction problem. To address
the detection problem, we develop TM–ATAM that models
temporal transitions of health-related topics. To address the
prediction problem, we propose T–ATAM, a novel method
which uncovers latent ailment inside tweets by treating
time as a random variable natively inside ATAM [4]. Treating
time as a random variable is key to predicting the subtle change
in health-related discourse on Twitter.

Common ailments are traditionally monitored by col-
lecting data from health-care facilities, a process known
as sentinel surveillance. Such resources limit surveillance,
most especially for real-time feedback. For this reason, the
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Web has become a source of syndromic surveillance, oper-
ating on a wider scale, near real time and at virtually no
cost. Our challenges are: (i) identify health-related tweets, (ii)
determine when health-related discussions on Twitter transitions
from one topic to another, (iii) capture different such transitions
for different geographic regions. Indeed, in addition to evolv-
ing over time, ailment distributions also evolve in space.
Therefore, to attain effectiveness, we must carefully model
two key granularities, temporal and geographic. A temporal
granularity that is too-fine may result in sparse and spurious
transitions whereas a too-coarse one could miss valuable ail-
ment transitions. Similarly, a too-fine geographic granularity
may produce false positives and a too-coarse one may miss
meaningful transitions, e.g., when it concerns users living
in different climates. For example, discussions on allergy
break at different periods in different states in the USA [4].
Therefore, processing all tweets originating from the USA
together will miss climate variations that affect people’s
health. We argue for the need to consider different time
granularities for different regions and we wish to identify
and model the evolution of ailment distributions between
different temporal granularities.

While several latent topic modeling methods such as
Probabilistic Latent Semantic Indexing (pLSI) [5] and La-
tent Dirichlet Allocation (LDA) [6], have been proposed
to effectively cluster and classify general-purpose text, it
has been shown that dedicated methods such as the Ail-
ment Topic Aspect Model (ATAM) are better suited for
capturing ailments in Twitter [4]. ATAM extends LDA to
model how users express ailments in tweets. It assumes that
each health-related tweet reflects a latent ailment such as
flu and allergies. Similar to a topic, an ailment indexes a
word distribution. ATAM also maintains a distribution over
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California,US
cramps cold

sleep disorder → overweight
bodypain 30/4 ageing

Manila
headache throat infection
backache → sinus

cancer 30/4 stomach infection

Nevada,US
insomnia panic attack

throat → asthma
cramps allergies

Jakarta
bronchitis ulcer
typhoid → migraine
throat 31/1 chest pain

Dublin
body pain obesity

pimples → acne
depression 31/10 cold

Bristol
aches eye infection

cramps → ear infection
overweight sinus

Georgia,US
headache tumor
body pain → migraine

cramps ache

Fig. 1: One-Way ailment transitions obtained by TM–ATAM for various regions. For each location the time period is divided into
two parts, preceding and following the most significant change-point discovered for that location. We show the most popular
ailments on either side of this boundary.

symptoms and treatments. This level of detail provides a
more accurate model for latent ailments.

On the other hand, while pLSI and LDA have been
shown to perform well on static documents, they cannot
intrinsically capture topic evolution over time. Temporal-
LDA (TM–LDA) was proposed as an extension to LDA for
mining topics from tweets over time [7]. To address the
health transition detection problem, we propose TM–ATAM
that combines ATAM and TM–LDA. A preliminary version
of TM–ATAM was described in a short paper [8]. We show
here that it is able to capture transitions of health-related
discussions in different regions (see Figure 1). As a result,
the early detection of a change in discourse in Nevada, USA
into allergies can trigger appropriate campaigns.

In each geographic region, TM–ATAM learns transition
parameters that dictate the evolution of health-related topics
by minimizing the prediction error on ailment distributions
of consecutive pre-specified periods of time. Our second
problem, the health transition prediction problem, is to
automatically determine those periods. We hence propose
T–ATAM, a different and new model that treats time as a
random variable in the generative model. T–ATAM discovers
latent ailments in health tweets by treating time as a variable
whose values are drawn from a corpus-specific multinomial
distribution. Just like TM–LDA, TM–ATAM and T–ATAM
are different from dynamic topic models [9], [10], [11],
as they are designed to learn topic transition patterns from
temporally-ordered posts, while dynamic topic models focus
on changing word distributions of topics over time.

Our experiments on a corpus of more than 500K health-
related tweets collected over an 8-month period, show that
TM–ATAM outperforms TM–LDA in estimating temporal
topic transitions of different geographic populations. Our
results can be classified in two kinds of transitions. Stable
topics are those where a health-related topic is mentioned
continuously. One-Way transitions cover the case where some
topics are discussed after others. For example, our study
of tweets from California revealed many stable topics such
as headaches and migraines. On the other hand, tweeting
about smoking, drugs and cigarettes is followed by tweeting
about respiratory ailments. Figure 1 shows example one-
way transitions we extracted for different states and cities in
the world. Such transitions are often due to external factors
such as climate, health campaigns, nutrition and lifestyle of

different world populations.
Our empirical evaluation relies on two approaches:

perplexity as a measure to predict future ailments,
and a comparison against a ground truth. Using per-
plexity, we show that by modeling transitions in the
same homogeneous time period, TM–ATAM consis-
tently outperforms TM–LDA in predicting health topics in
all social-media active regions. By outperforming TM–LDA
in predicting future health topics, we effectively show that
it is essential to use a dedicated method that separates
health-related topics from other topics. We also find that
prediction accuracy for health topics is higher when oper-
ating TM–ATAM on finer spatial granularity and shorter
time periods. That could be explained with more focused
discourse, and hence less noise, in finer spatio-temporal
granularities. T–ATAM is the big winner as it largely out-
performs the other models, TM–LDA and TM–ATAM, in
predicting health topics in both US and non-US regions.
Finally, by a comparison with CDC "flu" data (the rates of
the positive tests of influenza measured by the Center of
Disease Control and Prevention in the US) and Google Flu
Trends data, T–ATAM shows very good correlations.

We summarize our contributions as follows:
1) TM–ATAM, a model able to detect health-related tweets

and their evolution over time and space. TM–ATAM
learns, for a given region, transition parameters by min-
imizing the prediction error on ailment distributions of
pre-determined time periods.

2) T–ATAM, a new model able to predict health-related
tweets by treating time as a variable whose values are
drawn from a corpus-specific multinomial distribution.

3) Extensive experiments that show the superiority of
T–ATAM for predicting health transitions, when com-
pared against TM–LDA and TM–ATAM, and its effec-
tiveness against a ground truth.

To the best of our knowledge, this is the first paper that
effectively enables the early detection of evolving health-
related topics in tweets. Section 2 defines our data model,
and the two existing topic models for tweets LDA and
ATAM, and formalizes our health transition detection and
prediction problems. In Sections 3 and 4, we describe the
construction of our two models TM–ATAM and T–ATAM.
Section 5 contains experiments. Related work is provided in
Section 6, and conclusion in Section 7.
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TABLE 1: Mapping tweets to documents
Term Description
P posts
G regions
T time periods
Pt
g posts from region g during time t

Dt
g document-set built by mapping the content

of each post p ∈ Pt
g to a document

“Having tonsillitis and coughing for a straight
hour ain’t no fun.... my throat is raw!

Thank god for antibiotics and pain meds.”

Example tweet

<Sickness (0.45), Depression (0.27), Flu (0.09), Re-
covery (0.04), Sad (0.04), Headache (0.09). . .>

Topic vector, θ, produced by LDA

<ThroatInfection (0.57), Generos-
ity (0.14), Doctor (0.07), Weekend

(0.07), Flu (0.07), Sick-Leave (0.07). . .>

Topic vector, Θ, produced by ATAM

Fig. 2: LDA vs ATAM: Topic distributions for an example tweet.

2 DATA MODEL, TOPIC MODELS AND THE TRANSI-
TION DETECTION PROBLEM

We present our data and define a model that maps tweet
posts to documents of different time and geographic gran-
ularities. We follow that with a background section that
describes LDA and ATAM. Then we introduce the problems
we are addressing in this work.

2.1 Mapping Tweets to Documents
We consider a set of posts P = {p1, p2...pn}. A post is the
smallest unit of user-activity on a social media platform,
such as a tweet, a tumblr post, or a facebook status update.
In addition to a unique identifier and content, we assume
the existence of two attributes, geographic coordinates and
timestamp, for each post, < id, coord, tstamp, content >.

Let G = {g1, g2, ...} represent a set of geographic regions
around the world. We use Pg to refer to the set of posts
in P that originate from a region g ∈ G. The choice of a
geographic granularity (country, state, county) is required
to instantiate G.

In a similar fashion, with a suitable choice of tempo-
ral granularity, we could divide up the entire time range
spanned by posts in P into disjoint and consecutive periods,
T = {t1, t2...}. Possible choices for instantiation of T are
week, bi-week, month, etc. We use Pt

g to refer to the set of
posts in P that originated from a region g during period t.

We consider Dt
g the document formed by the concatena-

tion of the content of all posts belonging to the set Pt
g .

We use Dg = {Dt1
g , D

t2
g , . . .} to denote the set of all

documents corresponding to the aggregation of tweets from
region g for different time periods in T . Table 1 contains our
terminology.

2.2 Background: Uncovering Latent Topics in Tweets
We review the principles general-purpose as well as health-
related topic modeling. Existing models are (generally) un-
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Fig. 3: Ailment Topic Aspect Model.

supervised generative models that describe the content of a
document in a large collection D. In our case, D shall corre-
spond to the set of documents built from tweets originating
from one given region during a fixed time period.

2.2.1 Uncovering Latent Topics with LDA
Latent Dirichlet Allocation (LDA) represents each document
as a probability distribution over k topics [6]. Each topic z
in turn is represented as a probability distribution φz over
a set of words. LDA assumes that the topic distribution θd
of a document d and the vocabulary distribution φz of a
topic z are generated according to a Dirichlet distribution.
Vectorial parameters α and β of these Dirichlet distributions
are assumed to be common to the whole corpus.

While LDA is successful at uncovering generic topics,
such as “healthcare”, “obesity”, “substance abuse”, infre-
quent topics that may be related to specific subjects, such
as “tobacco use”, pose a challenge to LDA. Furthermore,
for an excessively frequent topic, such as “weight loss”,
LDA adds noise, in the form of words such as “gardening”,
“oils”, “anti-ageing”, “muscle gain”, that are not related to
the topic [4], [12]. LDA is therefore not a good choice for
modeling latent topics in health-related data.

2.2.2 Uncovering Health Topics with ATAM
The probabilistic Ailment Topic Aspect Model was designed
specifically to uncover latent health-related topics in a col-
lection of tweets [4]. The proposed method achieves re-
markable improvements over LDA. Its novelty is that it
distinguishes background words such as “home” and “watch-
ing TV” from health-related words such as “hurts” and “al-
lergy”. For each document, these health-related words are
considered to correspond to a unique ailment such as “obe-
sity”,“insomnia” or “injuries”. The word could be associated
to the ailment as its symptom (e.g., the word “weight”
is clearly a symptom related to the ailment “obesity”), a
treatment (the word “diet” is clearly a symptom related to
the ailment “obesity”) or a general word (the word “dentist”
is not a background word and belongs to the vocabulary
of the ailment “dental” but is neither a symptom nor a
treatment).

Figure 3 summarizes the process of ATAM. When gener-
ating a document (tweet), one first associates to it an ailment
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“Neck pain and lower back pain for
a pelvis and knee injury? Word ?!”

Example tweet

<Body Pain (0.88), Comparison (0.11). . .>

Topic vector, Θ, produced by ATAM

<BackPain (0.30), Allergies (0.06), Anxiety (0.01). . .>

Ailment vector, η, produced by ATAM

Fig. 4: θ is predicted by ATAM on an example tweet, η predicted
by ATAM on all posts containing the example tweet

such as “allergy”, “insomnia” or “injury”. Thereafter, the
document is generated word by word. Using two auxiliary
random variables ` and x, one chooses if the word is a
background word or a general-purpose word (` = 0 or
` = 1, x = 0). The word can then be drawn from a vocabu-
lary distribution common to the whole corpus (case ` = 0)
or generated from an underlying Dirichlet distribution topic
z (case ` = 1, x = 0). When the word is related to health
(case ` = 1, x = 1), another random variable y enables
to choose if this word is a aspect-neutral (case y = 0), a
symptom (case y = 1) or a treatment (case y = 2). Words are
hence drawn depending on the ailment awhich has been associated
to the document. Figure 2 shows the topic distribution vectors
for a sample tweet. Note the stronger relevance to health-
related matters in the ATAM vector compared to its LDA
counterpart. Note that each tweet is associated with one
single ailment and one topic distribution whereas at the
corpus level, we have one ailment distribution η. A topic
distribution can also be associated to a corpus by concate-
nating all tweets in that corpus and considering them as a
single document.

2.3 Transition prediction and detection problems
Using ATAM over a region and a period, we associate
with a given aggregated document Dt

g , an aggregated topic
distribution, Θt

g which is a mix of general-purpose and
health-related topics. More precisely, this topic distribution
has the following components :
• ηtg : Distribution over ailments of the corpus of tweets

used to build the aggregated document Dt
g

• θtg : Distribution over general topics in the document
Dt

g , considered as a single document
We then define Θt

g =
(
(1− π)θtg πηtg

)
where π is the

proportion of non-health words related to some aspect of
an ailment. We show Θ for an example tweet in Figure 4.

Transition Prediction Problem: Given our documents
D

ti−1
g formed by tweets originating from a region g ∈ G

during time period ti−1, predict the ailment distribution
ηtg of documents in Dti

g , corresponding to posts from g in
period ti from the topic distribution Θ

ti−1
g of document

D
ti−1
g corresponding to posts from g during period ti−1.

To solve this problem, we develop a model TM–ATAM in
Section 3.

Transition Detection Problem: Our second prob-
lem aims to detect health-topic transitions, that is
change-points in the ailment distribution vector ηtg . More
precisely, considering the evolution of the content of our
tweets on the whole period, that is the successive documents
Dt1

g , · · · , DtN
g , we want to detect when the ailment distribu-

tion ηtg is changing. A general formulation of this problem
would return the k change-points with the highest dis-
tance between two successive ailment distributions. To solve
this problem, we develop a model T–ATAM in Section 4.

3 A FIRST MODEL FOR AILMENT TRANSITIONS :
TM–ATAM
Our first objective is to model ailment transitions, that is
potential change in time of the health topical content of our
tweets. We do so by introducing a new model, TM–ATAM
that we define in this section. This model is derived from
TM–LDA that we describe first.

3.1 General-purpose topic modeling over time with
TM–LDA
In order to take into account the evolution of the underlying
topics of a dynamic collection of documents with time (e.g.,
a microblog or a facebook page), Wang et al. (2012) intro-
duced a modified version of the LDA model, TM–LDA [7].
In [7], TM–LDA was introduced to extend LDA with mod-
eling topic evolution of dynamic collection of documents
over time. Topic distribution of the i–th document, θi is
assumed to depend linearly on the topic distribution of the
previous document, θi−1. At the heart of the algorithm lies
the following equation.

θi ≈
θi−1.M

‖θi−1.M‖`1
(1)

where M is a k × k matrix, called the transition matrix, and
k is the number of topics. To obtain the transition matrix,
the authors propose to solve the following least squares
problem (‖ · ‖F denotes the Frobenius norm and X denotes
the search space):

M = argmin
X
‖A.X −B‖F (2)

where A and B are as specified below.

A =

 θ1
...

θi−1

 , B =

θ2...
θi

 (3)

However, while being quite elegant in modeling general
purpose topics TM–LDA is not specialized to capture
health transitions over time.

3.2 TM–ATAM: Modeling Health Topics transition over
Time
While ATAM is effective at modeling health-related topics,
it is not designed to model topic transitions over time. We
hence propose TM–ATAM that builds on top of ATAM
and TM–LDA. TM–ATAM computes the aggregate topic
distribution, Θt

g , of a set of documents Dt
g and learns the

evolution with time of the vector Θt
g .
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TM–ATAM, at its heart, solves following equation.

At
g ≈ At−1

g .M (4)

where

At−1
g =

 Θ1
g

...
Θt−1

g

 , At
g =

Θ2
g

...
Θt

g

 (5)

M is an unknown transition matrix which is obtained by
solving the following least square problem:

min
M
‖At

g −At−1
g .M‖F

TM–ATAM thus learns a transition matrix which is used to
model health topics. It will be our main tool in our transition
learning task.

3.3 Learning transitions with TM-ATAM
We now focus on the transition learning problem and
explain how we solve it using TM-ATAM. Algorithm 1
contains the steps of our solution. It has two main
parts: change-point detection and transition
learning. We first describe how change-points are
detected and then go on to show how this last step will be
used to predict the evolution of ailment-topic distribution
over time within homogeneous time periods as well as
health topical transitions.

3.3.1 Change-Point Detection with TM-ATAM
For each region g ∈ G (Line 1), we first run ATAM over the
full time period Dg (Line 2). Next for each period t ∈ T
(Line 3), we use the output of ATAM over Dg to generate
Θt

g and deduce the ailment distribution ηtg since we shall
focus only on health-transitions (Lines 4– 12). Next,
we examine the distance between consecutive distributions
ηt−1g and ηtg of the region g to identify the most significant
health-related change-point, tc (Line 14). We treat the
choice of distance measure m as black box, which could be
Bhattacharya Distance1 or Cosine Similarity2. The time period
tc is termed as the change-point for region g. The entire
span of time, [t1 t|T |], is divided into two intervals, pre,
consisting of all time periods prior to the change-point
(Line 15), and post, consisting of all time periods after the
change-point (Line 16).

We term these intervals as homogeneous time-
periods w.r.t ailments being discussed in Twitter. Quali-
tatively, a homogeneous time period is a time interval
(collection of consecutive time periods) during which the
tweets originating from the region are homogeneous in
terms of ailment topics. The change-point characterizes
a significant change point in the evolution of ailments. We
posit that such change points exist. These change points in
ailment topic discussions may be caused by onset of the dis-
ease or some other external factors. Nevertheless, they are
the interesting points for analyzing purposes. Such analysis
may lead to various insights into onset of diseases. Onset
of disease is usually affected by several factors, such as
weather, which may cause a sudden onslaught of ailments

1. https://en.wikipedia.org/wiki/Bhattacharyya_distance
2. https://en.wikipedia.org/wiki/Cosine_similarity
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Fig. 5: Topic transitions over time.

different from the ones that were in circulation previously.
The pervasive nature of communicable diseases is also a
contributing factor. Note that the results in Figure 5 support
our assumption, where we show the difference between
ailment distributions of consecutive months for 3 different
regions Kuala Lumpur (a city in Indonesia), Oklahoma (a
state in the USA), and Bristol (a city in the UK). In Figure 5,
dissimilarity on Y-axis denotes the Bhattacharya distance
between ailments distributions (inferred by TM–ATAM) of
consecutive months for the 3 regions. The sharp peaks
obtained validate the existence of time intervals that are
homogeneous w.r.t. ailments.

3.3.2 Ailment prediction and transition learning
The key idea in TM–ATAM is after these change-points
detection, is to predict evolution of health topics within
each homogeneous time period. This is a fresh de-
parture from existing solutions that operate in a
homogeneous time period-agnostic fashion. By defini-
tion, a homogeneous time period is (nearly) homoge-
neous in terms of ailments. In other words, the ailments
evolve in a smooth fashion within a homogeneous time
period and change abruptly across homogeneous time
period boundaries. In this study, we set k to 1 and find a
single change-point for each region g. While this may not
be true for all regions, we obtain significant improvement in
terms of prediction accuracy over the state-of-the-art with
just a single boundary.

We outline in Lines 17–21 of Algorithm 1 the steps un-
dertaken. We use Z to refer to the set of all health and non-
health topics. The key step is the estimation of the unknown
transition matrix for each season s (the pre-change-point
season and the post-change-point one), that can be
used to predict the content of our set of tweets. The pre-
change-point season and the post-change-point are
the time intervals on which we run our tests. We also use
it further to learn transitions as explained in Section 5.3.

To make easier comparison between regions we focus
on the case where we estimate only one change point.
We emphasize that one can easily modify the algorithm
to estimate several change points. One has only to replace
the estimation of the time t corresponding to the maximal
distance between two consecutive vectors ηtg and ηt+1

g with
the k times corresponding to the k-th top distances between
consecutive vectors ηtg , ηt+1

g if we want to estimate k change
points. Another possible alternative is to set a threshold
common to all regions and to keep times t such that the
distance between ηtg and ηt+1

g is above the threshold.
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Algorithm 1 TM-ATAM: change-point Detection and
Training Ailment Distribution Predictor

1: for all g ∈ G do
2: Run ATAM on Dg

3: for all t ∈ T do:
4: for all z ∈ Z do:
5: Θt

g[z]← 0
6: end for
7: for all d ∈ Dt

g do:
8: for all w ∈ d do:
9: z ← topic(w)

10: Θt
g[z]← Θt

g[z] + 1
|d|×|Dt

g|
11: end for
12: end for
13: end for
14: tc = argmax

t
m(ηt−1g , ηtg)

15: pre = [t1 , tc−1]
16: post = [tc , t|T |]
17: for all s ∈ {pre, post} do:
18: Run ATAM on the period s and infer for each

time-period of the homogeneous time period s, the
vectors Θt

g which includes the ailment vector ηtg for each
period of the season and then form its aggregation: Ats

g

19: Ats
g ≈ Ats−1

g .Ms

20: Estimate the matrix transition related to season s,
Ms = (Ats−1ᵀ

g Ats−1
g )−1Ats−1ᵀ

g Ats
g

21: end for
22: end for

4 AN ALTERNATIVE MODEL : TIME-AWARE AIL-
MENT TOPIC ASPECT MODEL (T–ATAM)

TM–ATAM assumes that there is a common linear relation
between all the aggregate topic distributions at a given
period t and the one at the period just before. TM–ATAM
fails to perform optimally when operated in regions where
there are no substantial transitions in health topics, as also
shown in Section 5. In particular, TM–ATAM does not take
into account the potential seasonality effect, which maybe
very different according to the disease of interest. Also, in
TM–ATAM, we need to do post processing in order to come
up with homogeneous time periods, with respect to
health-topics discussed in tweets.

We now introduce a second time-aware model, coined
the term, T–ATAM, where the timestamp t of each tweet is
considered as a random variable, depending on the ailment
associated to the post. Note that since time is now a random
variable, we shall now aggregate our tweets only by region
and run our new model on the different sets of posts Pg

to have a deep understanding on the time evolution of
the health-related content of our set of tweets. It is highly
expected there is a strong dependence of the content of
our posts with respect to time but also to the ailment of
interest. For example, tweets associated to flu are probably
mainly concentrated in winter and that those associated to
sunburns mainly posted in summer whereas some ailments
maybe non seasonal ones. T–ATAM learns homogeneous
time periods by itself and no post-processing is needed
in order to come up with change-point in ailments being
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Fig. 6: Time-Aware Ailment Topic Aspect Model.

discussed in tweets. This is because, in generative process,
time-stamp is generated conditioned on the ailment as-
signed to the tweet. Therefore, ailments learned are already
time (season)-aware after the model has run its course. Fig-
ure 6 shows the graphical representation of T–ATAM. This
model adds three extra random variables to the graphical
model of ATAM (Figure 3): t, ψ and µ.

Let us now describe the generative process of T–ATAM.
Basically, the generative process of each document is exactly
the same as that of ATAM, that we have already described
in Section 2.2, except that now a time stamp is generated for
each document depending on the ailment associated to the
considered tweet (steps (3) and (5-III) of the generative pro-
cess described below). Time stamp is an observed random
variable. To generate the time stamp associated to a given
tweet, we first generate one time-distribution per ailment
{ψa, a ∈ A} (step (3)). Thereafter, depending on the ailment
a associated to the concerned document, we generate its
time stamp according to a multinomial distribution with
parameter ψa (step (5-III)). Additionally, ψa is drawn from a
Dirichlet distribution parameterized by a vector µa, specific
to each ailment. This is intuitive because different ailments
have their own specific chance of breaking out at different
time periods. We summarize the generative process of our
new model T–ATAM just below :
Generative Process
(1) Set the background switching binomial λ
(2) Draw an ailment distribution η ∼ Dir(σ)
(3) Draw A multinomials ψA ∼ Dir(µ)
(4) Draw word multinomials φ ∼ Dir(β) for the topic,

ailment, and background distributions
(5) For each message 1 ≤ m ≤ D

(I) Draw a switching distribution π ∼ Beta(γ0, γ1)
(II) Draw an ailment a ∼Mult(η)

(III) Draw a time stamp t ∼Mult(ψa)
(IV) Draw a topic distribution θ ∼ Dir(αa)
(V) For each word wi ∈ Nm

(A) Draw aspect yi ∈ {0, 1, 2}(observed)
(B) Draw background switcher l ∈ {0, 1} ∼ Bi(λ)
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(C) if l == 0:
(i) Draw wi ∼Mult(φB,y)(a background)

(D) Else:
(i) Draw xi ∈ {0, 1} ∼ Bi(π)

(ii) If xi == 0 :(Draw word from topic z)
(a) Draw topic zi ∼Mult(θ)
(b) Draw wi ∼Mult(φz)

(iii) Else:(draw word from ailment a aspect y)
(a) Draw wi ∼Mult(φa,y)

It should be noted that token level sampling for y, x
and l for T–ATAM stays the same as ATAM. Document-level
sampling for ailment a for T–ATAM changes and is given by
following equation:

P (am|a−m,w, t, y, x, l)
∝ P (am|a−m)P (tm|t−m, a, µ)
Nm∏
n

p(wm,n|a,w−(m,n), y, x, l)

(6)

Factor which is to be multiplied with existing factors at
document level sampling of ATAM for posterior distribu-
tion of ailment a: P (tm|t−m, a, µ)

P (tm|t−m, a, µ) =
ni,tm−m + µ

ni−m + Tµ
(7)

Superscript i indexes over ailments. In particular, ni denotes
number of times an ailment occurs in the corpus and ni,tm

denotes number of times an ailment occurs with a time
stamp tm.

As proved in the experimental results, this new model
is much more accurate than the previous one both in terms
of perplexity measure and in agreement with ground truth.
This model also beats ATAM in many of the regions where
there is no substantial health topic transitions. Note that
in the case of T–ATAM, we can infer change-point and
transitions as in the case of TM–ATAM.

5 EXPERIMENTAL EVALUATION

We conduct experiments to evaluate the performance of
TM–ATAM and T–ATAM on real world data. Section 5.1
describes the experimental setup including the datasets
and test-bench. In Section 5.2, we compare TM–ATAM
and T–ATAM against state-of-the-art approaches. That is
followed by a detailed study of the behavior of TM–ATAM
in Section 5.4.1 and a qualitative analysis of TM–ATAM’s
results in Section 5.3. Then in Section 5.4.2, the effect of
changing parameters in T–ATAM is studied. Finally, we
study the correlations between T–ATAM’s results with CDC
data and Google Flu Trends in Section 5.5 for the influenza
rates in US. Finally, we highlight the key insights drawn
from our experiments in Section 5.6.

5.1 Setup
5.1.1 Data
We employ Twitter’s Streaming API to collect tweets be-
tween 2014-Oct-8 and 2015-May-31. We use the Decahose

Fig. 7: Heatmap over collected health tweets. A major fraction
of the tweets originate from various states in the US.

TABLE 2: Dataset Statistics
collection period (days) 235

#tweets 1,360,705,803
#tweets (health-related) 698,212

#tweets (health-related+geolocated) 569,408

Stream3 which gives a 10% random sample of the total
tweets generated each day. The collected tweets were sub-
jected to two pre-processing steps.

Filtering health-related tweets: We removed retweets
and tweets containing URLs; they were almost always false
positives( e.g., news articles about the flu, rather than mes-
sages about a user’s health.) Since our interest lies in public
health discourse on social media, we only keep tweets con-
taining one of 20,000 health-related keywords obtained from
wrongdiagnosis.com. This website lists detailed information
about ailments, symptoms and treatments. Resulting tweets
were given to an SVM classifier [13] with linear kernel and
uni-gram, bi-gram and tri-gram word features. To train the
classifier, a modest-sized sample of the original corpus was
annotated through crowdsourcing efforts where annotators
were asked to label 5, 128 tweets. The precision and recall
of the employed classifier are 0.85 and 0.44. In our case, we
focused on high precision as high quality health tweets is a
pre-requisite for both TM–ATAM and T–ATAM to function
efficiently. Table 2 shows that out of the 1.36B tweets we
collected, 698K were health-related.

Geolocation: The ability to operate seamlessly at varying
geographic resolutions mandates that the exact location of
each tweet be known to TM–ATAM and T–ATAM. Twitter
affords its users the option to share their geolocation. It
has been shown that a very small number of Twitter users
choose to share their location. While this artefact results in
significant reduction in the number of tweets, in absolute
terms, we retain more than half a million tweets (569K as
indicated in Table 2). In Figure 7, we present a heatmap that
shows the geographic spread of these tweets. The darker the
color, the higher the number of tweets. The top-10 regions
(at spatial granularity state) with the highest number of
health tweets lie exclusively in the US.

5.1.2 Test-Bench
We run our experiments on a 32 core Intel Xeon @ 2.6Ghz
CPU (with 20MB cache per core) system with 256 Gig

3. https://dev.Twitter.com/streaming/overview
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TABLE 3: Default Parameters
Term Description Value
G Geographic granularity states
T Temporal granularity months
m Distance measure Bhattacharya

RAM running Debian GNU/Linux 7.9 (wheezy) operating
system. All subsequently discussed components were im-
plemented in Java 1.8.0_60.

5.2 Comparison between models

5.2.1 Perplexity Measure

We use perplexity, an empirical measure often used in NLP.
4 Perplexity of a language model measures how accurately
the model can explain previously unseen data/documents.
Given a language model l and a document d, perplexity is
defined as below.

Perplexity(l) = 2−
∑

wi∈d
log pl(wi) (8)

This formula of perplexity for a document d can be con-
verted to a formula of perplexity for a set of documents Dt

g

as follows:

Perplexity_Dt
g(l) = 2

−
∑

wi∈d
log

∑
d∈Dt

g
pl(wi)

|Dt
g| (9)

It denotes the perplexity of language model l on a
document-set at geo-granularity g and temporal granular-
ity t. Higher probability of words that occur in unseen
documents results in lower perplexity and is hence better.
Here, pl(wi) is the probability of occurrence of word wi as
estimated by the language model l in the document set.
Previously unseen words can result in infinite perplexity.
We use add-one smoothing to overcome this fact 5. pl(wi),
probability of word, for any document set is calculated
using the Formula 10:

pl(wi) =
∑
z

P (w|z)P (z) =
∑
z

n(z, w)

n(z)
P (z) (10)

Here P (z) is the probability of topic. The key point in
equation 10, is that, first term P (w|z) does not change
and only the second term P (z) changes with topic models.
This is because we are in scope of those topic models
where topic probabilities (and not the word probabilities
themselves within each topic) change with time as ours
is not the domain of dynamic topic models where word
probabilities per topic change with time. Having computed
P (w), we can compute perplexity using the formula 9. We
compute perplexity of TM–ATAM and T–ATAM and then
compare perplexity of TM–ATAM and T–ATAM with that
of TM–LDA on the same test document set Dt

g as explained
in the next section. All TM–ATAM, T–ATAM and TM–LDA
are treated as language models as all give out probability of
each word for any document-set Dt

g .

4. https://en.wikipedia.org/wiki/Perplexity
5. https://en.wikipedia.org/wiki/Additive_smoothing

5.2.2 Comparing TM–ATAM and T–ATAM with TM–LDA and
ATAM

We present results on the comparison of prediction accuracy
of TM–ATAM and T–ATAM against ATAM and TM–LDA.
Recall that the terms change-point and homogeneous
time period refer to the point in time at which discourse
density of ailments changes substantially, and the time
period before and after that point, respectively.

5.2.2.1 TM–ATAM: We first divide the postings
of each region into two homogeneous time periods
as inferred by change-point tc. We then divide each
homogeneous time period into train and test set as
follows. Pre-homogeneous time period is divided
into train ([t1 , tc−3]) and test ([tc−2, tc−1]) set. Post-
homogeneous time period is divided into train
([tc+1, t|T |−2]) and a test ([t|T |−1, t|T |]) set. For example, if
tc for a region is between January to February, then train
set and test set of pre-homogeneous time period are
tweet posts of the months in the set [October, December]
and [January, February] respectively. Train and test set
of post-homogeneous time period are tweet posts
of months in the set [March, April] and [May, June]
respectively. We obtain 69 homogeneous time periods
for 66 regions. ATAM is re-run over train set of each
homogeneous time period. It should be noted that
though computing change-point tc required access to
full dataset, perplexity calculations are done within each
homogeneous time period and clear distinction is
made between train and test set while computing it. We
then model a transition matrix Mtmatam on the training
data of each homogeneous time period as described in
Section 3.3. For each tweet p of the first month in the test set
(tc−2 for the pre homogeneous time period and t|T |−1
for the post homogeneous time period), we compute
the probability of "health topic" z using the Formulas:

P (z|tc−2) =

∑
p ∈ tc−2

P (z|p for tc−2)

#p ∈ tc−2
(11)

P (z|t|T |−1) =

∑
p ∈ t|T |−1

P (z|p for t|T |−1)

#p ∈ t|T |−1
(12)

Here P (z|p) is computed simply by (w is the word of tweet
p):

P (z|p) =
∑
w

P (z|w)P (w|p) =
∑
w

n(z, w)

n(w)
P (w|p) (13)

Here, values for n(z, w),n(w) are taken from ATAM run on
the training months. If we encounter an unseen word, we
use add-one smoothing to avoid P (z|w) to shoot to infinity
and hence perplexity to shoot to infinity. P (w|p) is simply
the number of times wordw occurs in the tweet p divided by
the total number of words in the tweet p. We then predict the
future probability of each topic in the second month of the
test data (P (z|tc−1) for pre homogeneous time period
and P (z|t|T |) for the post homogeneous time period)
using the corresponding transition matrix Mtmatam. The
perplexity of TM–ATAM can now be computed against the
words of the tweets of second test month (tc−1 and t|T |)
using the Formula 9. This gives 69 values of perplexity, one
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Fig. 8: Perplexity comparison of T–ATAM, TM–ATAM, TM–LDA and ATAM for top 20 social media active regions.

for each homogeneous time period of each region. We
compare our results with following competitors:

5.2.2.2 ATAM: Underlying assumption of atam is
that topics stay static with respect to time. In order to
assert the fact that health topics transit from one to another,
we compare performance of TM–ATAM with ATAM by
computing perplexity of ATAM on words of first month
of test set and not predicting any topic distribution using
transition matrix. For each tweet p of the first month in
the test set (tc−2 for the pre change-point and t|T |−1 for
the post change-point), we compute the probability of
"health topic" z using the Formulas 11,12,13. It should be
noted that in this case we do not model a transition matrix to
predict probability of topics for second month of test set. Hence,
this denotes model where health topics stay static. We can
then compute perplexity of ATAM against words of actual
tweets of the second months of test month (tc−1 and t|T |).
As shown in Figure 8, TM–ATAM beats ATAM in all US
active regions. In Non-US active regions, the performance
of TM–ATAM gets affected due to no substantial change in
health topics with time. That means there is no substantial
change in health topics discussed in those tweets. This may
mean limitation of Twitter and sparsity of tweets in these
regions but not necessarily a limitation of our model. In
fact, our model could be applied to other microblogs such
as Reddit or Google search queries. This also means that
these are the regions where many diseases are prevalent
and discussed all over the year. As a result, there are no
transitions of health topics and since TM-ATAM is meant
to model transitions of health topics, its performance is
affected negatively.

5.2.2.3 T–ATAM: In order to assert the fact that
considering time as a random variable for T–ATAM is more
efficient, we compare T–ATAM with ATAM and TM–ATAM
by computing perplexity of T–ATAM on words of second
month of test set. After getting the homogeneous time

periods for each region and dividing each homogeneous
time period into train and test set, T–ATAM is run over
train set of each homogeneous time period. Then, for
each tweet p of the second month of the test set (tc−1 and
t|T |), we compute the probability P (z|tc−1) and P (z|t|T |)
using the Formulas 11,12 and 13. In case of T–ATAM, we
do not model any transition matrix and directly compute
P (z) on second month as model itself learned ailments
using the knowledge of time in-built in the model. This
tests T–ATAM’s capability using time as a random variable
model for coming up with ailment distributions which are
actual representative of words tweeted about in the time
of interest. It should also be noted that n(z, w),n(w) for
Formula 13 are calculated from T–ATAM run over train set.
Now, perplexity can be calculated against the words of the
tweets of second test month (tc−1 and t|T |). As shown in
Figure 8, T–ATAM beats both ATAM and TM–ATAM in all
active regions. Especially, for Non-US active regions, while,
TM–ATAM’s performance gets affected, T–ATAM shows a
good ability to predict future tweets based on its better
capability to incorporate knowledge of time within the
model itself. T–ATAM overcomes the shortcomings of no-
substantial change in health topics as diseases inferred from
health tweets are time-aware. As such, health topics inferred
by T–ATAM are not limited to short-lived topics but also
cover topics that are regularly discussed on Twitter. This
could explain why T–ATAM performs better even in regions
where health topics are stable over time.

5.2.2.4 Predicted TM–LDA: Each region can be
viewed as a virtual user and the transition matrix
Mtmlda of TM–LDA is trained by solving least squares
problem in the following manner. We merge the training
data of each homogeneous time period in each region
and train a transition matrix of TM–LDA. So, training data
for TM–LDA is the same as that of TM–ATAM and T–ATAM:
([t1 , tc−3]) for the pre homogeneous time period and
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([tc+1, t|T |−2]) for the post homogeneous time period.
For each tweet p of the first month of the test months
(tc−2 and t|T |−1), we compute the probability P (z|tc−2)
and P (z|t|T |−1) using LDA trained on merged training data
(Formulas 11,12,13). We then predict the future probability
of each topic in following month (tc−1 and t|T |) using cor-
responding Mtmlda. We can then compute the perplexity of
TM–LDA against words of actual tweets of the test months
(tc−1 and t|T |) using Formula 9 .

We take average over both homogeneous time-
periods (pre and post) and get a perplexity value for each
region. Figure 8 shows that TM–ATAM and T–ATAM consis-
tently beats TM–LDA and ATAM in predicting future health
topics on the test month by computing lower perplexity on
the words of the tweets of the test month in all social media
active states.

5.3 Qualitative Analysis of TM–ATAM

5.3.1 Change Points
The central idea in TM–ATAM is to identify homogeneous
time periods, i.e., time intervals that exhibit homoge-
neous ailment distributions, as well as transitions between
them. A natural question that emerges is how and why
ailments differ across change-point boundaries. In Figure
9 we show the sharpest change point, representing the
strongest transition, for the non-US regions respectively.
Those points can be explained with weather changes in
those regions. Jervis Bay can be explained by an increase in
rainfall. Dublin sees its lowest temperature in the November
period. Singapore and Manila have very similar weather
conditions and exhibit the same change point. A deeper look
at these transitions would provide more insights.

5.3.2 Topic Transitions
Entry mij in the transition parameter matrix M produced
by TM–ATAM, shows the degree that health topic zi will
contribute to health topic zj in the following predicted ail-
ment distribution. We analyze 3 kinds of transition matrices
corresponding to our setting: intra-homogeneous time-
period: Mpre, Mpost and inter-homogeneous time-
period: Mfull. Let mean be denoted by µ and standard
deviation be denoted by σ for further discussion. We adapt
the threshold used in [7] to our settings:

Threshold = µ+ 2× σnon−diagonal (14)

Here µ is the mean of the corresponding transition matrix.
σnon−diagonal is the standard deviation of non-diagonal
entries. We choose this threshold because 95.45% of the

Date:2014-Oct-8 Date:2015-May-31

Singapore

Dublin

Gauteng

JervisBay

Manila

Fig. 9: Monthly change-point boundaries for top-10 active
non-U.S. regions.

values lie within two standard deviations of the mean.6 We
identify three kinds of interesting transitions based on the
threshold defined in [7]:
• Self transitions: Diagonal entries above threshold
• Symmetric Transitions: Both mij and mji is higher than

threshold
• One-Way Transitions: Only one ofmij andmji is higher

than threshold
Table 4 lists interesting one-way health topic transitions ob-
served in California for the full time period. Self-Transitions
are hard to find in full time periods as topics change a lot
between homogeneous time periods. Mean of diagonal
entries is the quantification of how stable the transitions
are and standard deviation of non-diagonal entries is the
quantification of how much the topics fluctuate in the given
time granularity.

Further, we analyze Mpre, Mpost and Mfull of Kuala
Lumpur. Various statistics are summarized in Table 5.
µdiagonal is higher for both Mpre and Mpost than
Mfull. σnon−diagonal is higher for Mfull than both intra-
homogeneous time period transition matrices. These
statistics go on to show that health topics do not drastically
change and are coherent within the same homogeneous
time period and transform into one another a lot across
the homogeneous time periods. This further re-instates
this fact that it is more sensible to model topic transition ma-
trices within the same homogeneous time period and
update them once the homogeneous time period has
ended and change-point is encountered. Further, we an-
alyze the interesting self transitions of intra-homogeneous
time period (Mpre and Mpost) and one-way transitions
of Mfull. Further, we found interesting self-transitions and
one-way transitions in Kuala Lumpur and Arizona.

5.4 Effect of parameters
5.4.1 TM–ATAM: Effect of parameters

5.4.1.1 Geographic Granularity: We examine two
different choices for the geographic granularity i.e. states
and counties which correspond to first and second level
administrative divisions7. While TM–ATAM can be instan-
tiated at varying granularities of space, learning accurate
ailment distributions requires a certain minimum number
of tweets. Selecting larger than optimal sized regions would
introduce errors into the prediction algorithm. Choice of

6. https://en.wikipedia.org/wiki/68-95-99.7_rule
7. https://en.wikipedia.org/wiki/Table_of_administrative_

divisions_by_country
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TABLE 4: Mfull transitions for California (threshold: 0.815)
Transition Type From Topic To Topic Weight

One-Way Transitions smoking/junkies/drugs/cigarettes respiratory diseases 2.70
depression/complaining/cursing/slangs/self-pity joint pains/body pains 3.25

TABLE 5: Transitions Stats for Kuala Lumpur
Statistic Value

µdiagonal Mfull 0.0025
µdiagonal Mpost 0.01
µdiagonal Mpre 0.024

σnon−diagonal Mfull 0.09
σnon−diagonal Mpost 0.068
σnon−diagonal Mpre 0.018
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Fig. 11: Variation in perplexity for TM–ATAM at different
temporal granularities. Results for top-10 active regions.
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Fig. 12: Variation in perplexity for TM–ATAM at different tem-
poral granularities. Results for top-10 non-US active regions.

geographic granularity is non-trivial. Predicted perplexity
in counties is lower, hence better, than perplexity at the level
of states as shown in Figure 10. This is due to the fact that
tweets from smaller regions show less diversity in topics.

5.4.1.2 Temporal Granularity: We examine two dif-
ferent temporal granularities, months and weeks. Analogous
to geographic granularity, choice of temporal granularity
should not be too fine or too coarse. We show performance
of TM–ATAM on time granularities in Figures 11 and 12.
This is also attributed to the fact that prediction of health
topics in smaller temporal granularity is more accurate as
health topics do not transform by a substantial amount in
shorter periods.

5.4.2 T–ATAM: Effect of parameters

5.4.2.1 Geographic Granularity: We choose to com-
pare T–ATAM’s performance in two different cases: The
first when it does not consider any geographic granularity
(Global) and the second case when T–ATAM is instantiated
at the first level administrative division which is states.
While T–ATAM can be instantiated at varying space gran-
ularities, learning accurate ailment distributions requires
legitimate initialization of geographic granularity and a
certain minimum number of tweets.
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Fig. 13: Variation in performance of T–ATAM with geographic
granularity over regions. "States" correspond to first level ad-
ministrative divisions.

 0

 100

 200

 50

 150

Arizona

California

Connecticut

Illinois

NewJersey

Ohio
Oklahoma

Pennsylvania

Tennessee

Texas

P
e
rp

le
x
it
y

Region

Variation in perplexity with temporal granularity

TATAMweek

TATAMmonth

Fig. 14: Variation in perplexity for T–ATAM at different tempo-
ral granularities. Results for top-10 social media active regions.
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Fig. 15: Variation in perplexity for T–ATAM at different tempo-
ral granularities. Results for top-10 non-US active regions.

Results in Figure 13 show that operating in smaller
geographic granularity yields smaller perplexity and hence,
better prediction for health topics. We attribute this result
to the fact that tweets from finer geographic granularity
have less diversity in topics. Also, per-state breakdown for
detecting health topics is better since people in the same
region are exposed to the same weather conditions and are
more likely to have similar eating habits and hence develop
similar diseases.

5.4.2.2 Temporal Granularity: To study the effect of
time granularity on T–ATAM’s performance, we run it using
different time granularities: weeks and months. The results
are shown in Figures 14 and 15 for US and Non-US active
regions. Clearly, the smaller the time granularity, the lower
perplexity we obtain. As in the case of TM–ATAM, this
result can be attributed to the fact that when considering
smaller time granularity, we have less noise in tweets and
prediction of future words’ probabilities is better.

5.4.3 ATAM: Effect of parameters
5.4.3.1 Geographic Granularity and Temporal Gran-

ularity: Please note that ATAM does not formalize temporal
and geographic granularity in the model. We run it just to
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Fig. 16: Variation in perplexity achieved by ATAM at different
spatial granularities.
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Fig. 17: Variation in perplexity for ATAM at different temporal
granularities. Results for top-10 active regions.
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Fig. 18: Variation in perplexity for ATAM at different temporal
granularities. Results for top-10 NON-US active regions.

see effect of varying various parameters on its performance.
The performance of ATAM improves when run on each
individual state separately.

5.4.3.2 Temporal Granularity: As in the case of
TM–ATAM, ATAM also gets better results when run on
shorter time periods. Shorter periods capture subtle change
points in ailment distributions that might be missed when
ATAM is run on longer periods. But as time granularity gets
smaller, data gets sparser and for some regions health topics
inferred do not make sense.

5.4.4 TM–LDA: Effect of parameters

5.4.4.1 Geographic Granularity: Recall that for
TM–LDA and LDA each region is a virtual user, and
analysis by varying geographic granularity is not possible
- in the case of the whole globe, we are left with a single
virtual user. In case of a single user, modeling the
transition matrix of TM–LDA is not qualitative as TM–LDA
at its heart relies on tweet content of many users to model
its transition matrix. So, we confine to analysis of varying
temporal granularity to TM–LDA and LDA.

5.4.4.2 Temporal Granularity: Results on varying
temporal granularity are not stable in case of TM–LDA. In
some regions we get better results for weeks and in others
we get better results for months.
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Fig. 19: Variation in perplexity for TM–LDA at different tempo-
ral granularities. Results for top-10 active regions.
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and influenza rate calculated by CDC as a percentage of posi-
tive tests for flu in US

5.4.5 LDA: Effect of parameters

5.4.5.1 Temporal Granularity: We found in our ex-
periments that Temporal analysis of LDA is same as that
TM-LDA. Due to lack of space we do not show it.

5.5 T–ATAM vs CDC and Google Flu Trends

Qualitative analysis of TATAM was not done as in the case
of TM-ATAM. Qualitative analysis of TM-ATAM in Section
5.3 was highly dependent on the transition matrix which
is an inherent part of TM-ATAM. As there is no transition
matrix for T-ATAM, we compare its correlation with CDC
which is the ground truth.

To evaluate the output of T–ATAM and its ability to
explore several aspects of public health, we focus on syn-
dromic surveillance. Since T–ATAM discovers many ail-
ments such as "flu", we use it to track influenza in the US.
The CDC provides the rate of Influenza positive tests for
the whole US and by region (10 Standard federal regions)
reported by Public Health Laboratories.

We gather data from CDC site8 between 8-Oct-2014 and
31-June-2015 and we measure the correlation between the

8. https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEBRUARY 2018 13

probability of the flu ailment for each month (ailment distri-
bution produced by T–ATAM) and the influenza rate in the
United States measured by the CDC. We study T–ATAM’s
correlation for a range of topics (parameter Z) and ailments
(parameter A). The best correlation is obtained with Z = 10
and A = 25 for both T–ATAM and ATAM. Results for the
whole US (c.f. Figure 21) with T–ATAM yield a correlation
coefficient of 0.9465, while ATAM obtains a correlation of
0.829. T–ATAM is hence a very good candidate to track the
flu rate in tweets.

We study also T–ATAM’s performance for smaller geo-
graphic granularity and we calculate correlation in the 10
standard federal US regions 9. T–ATAM yields good correla-
tions for these regions. For instance, we obtain a correlation
coefficient of 0.8700 in the Central South of the US and a
correlation coefficient of 0.8592 in the Mid Atlantic.

The fact that T–ATAM’s correlation for flu is better than
ATAM’s correlation shows the importance of modeling time
natively in the model to capture seasonal diseases.

We make a second comparison against Google Flu
Trends which provides estimates of influenza activity in
many countries such us the US. It builds on aggregating
Google search queries. We gather data from Google Flu
Trends10 for the same time period (from 8-Oct-2014 to 31-
June-2015) and we aggregate it into months then we calcu-
late the correlation between the Google Flu Trends rates and
both T–ATAM and ATAM’s flu probabilities. We obtain a
correlation of 0.8906 for T–ATAM and 0.8391 for ATAM. This
confirms again the superiority of T–ATAM over all methods.

5.6 Summary of results
By modeling transitions in the same homogeneous time
period, TM–ATAM consistently outperforms TM–LDA in
predicting health topics in all social-media active regions.

We analyze the performance of TM–ATAM by changing
spatio-temporal parameters. In particular, we find that pre-
diction accuracy for health topics is higher when operating
TM–ATAM on finer spatial granularity and shorter time
periods.

Further, we go on to discover interesting region-specific
intra and inter-homogeneous time period health-
related transitions. While studying these transitions, we
find that homogeneous time periods are continuous
time periods for which people in the same region tweet
about similar health issues. When those homogeneous
time periods end, we found that ailments discussed in
Twitter transition into other ailment topics. These results
show that it is more logical to predict future ailments
concerning people within the same homogeneous time
period of a region than on any random health tweets.

By outperforming TM–LDA in predicting future health
topics, we show that it is essential to use a dedicated method
that separates health-related topics from other topics.

Since in T–ATAM, time is considered a random variable
following multinomial distribution, we expect it to outper-
form other models, TM–LDA and TM–ATAM in predicting
health topics using perplexity measure. According to our

9. https://en.wikipedia.org/wiki/List_of_regions_of_the_U
nited_States

10. https://www.google.org/flutrends/about/data/flu/us/data.txt

expectations, in most social-media active regions, in both
US active regions and non-US active regions, T–ATAM
outperforms TM–ATAM and ATAM (c.f Figure 8).

After analyzing T–ATAM’s performance by changing
various spatio-temporal parameters, we find that (as in
the case of TM–ATAM) the prediction accuracy for health
topics is higher when operating T–ATAM on finer spatial
granularity and shorter time periods.

Finally, T–ATAM shows good correlations with the
CDC’s flu data (the rates of the positive tests of influenza
measured by the Center of Disease Control and Prevention
in the US) and Google Flu Trends data for a syndromic
surveillance study.

6 RELATED WORK

Proliferation of social media platforms such as Twitter, pin-
terest, facebook, tumblr has led to their application to a wide
array of tasks including mental health assessment [14], [15],
[16], inferring political affiliation [17], [18], [19], [20], brand
perception [21], [22] etc.

Social media, especially Twitter, are good sources of
personal health [23], [24], [25], [26]. Previous studies on
public health surveillance have attempted to uncover ail-
ment topics on online discourse [4], [27] or model the
evolution of general topics [7]. In this paper, we combine
the best of both worlds which leads to the discovery of
disease-change-points for social-media active regions. We
model the evolution of diseases within change-points
and obtain significant improvement over the state-of-the-art
for public health surveillance using social media.

Just like TM-LDA, TM-ATAM and T–ATAM learn topic
transitions over time and not topic trends. Such transitions
the purpose of answering questions such as people talk
about fever before talking about stomach ache. Other com-
plementary approaches that learn the dynamicity of word
distributions or topic trends have been proposed. That is the
case of [9] that models topic evolution over time as a discrete
chain-style process where each piece is modeled using LDA.
In [11], the authors propose a method that learns changing
word distributions of topics over time and in [10], the au-
thors leverage the structure of a social network to learn how
topics temporally evolve in a community. TM–ATAM and
T–ATAM are however different from dynamic topic models
such as [9] and [10], and from the work of Wang et al. [11],
as they are designed to learn topic transition patterns from
temporally-ordered posts, while dynamic topic models fo-
cus on changing word distributions of topics over time.
TM–ATAM learns transition parameters that dictate the evo-
lution of health-related topics by minimizing the prediction
error on ailment distributions of consecutive periods at dif-
ferent temporal and geographic granularities. T–ATAM on
the other hand discovers latent ailments in health tweets by
treating time as a corpus-specific multinomial distribution.
Classical approaches [28] have been applied to mining top-
ics for inferring citations. Other discriminative approaches
[29], [30] have been applied to do an empirical study on
topic modeling and time-based topic modeling respectively.
None of those are directly applicable to health data.

Finally, in [31], Non-negative Factorization is used for
learning topic trends. Exploring the applicability of that
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complimentary approach to the evolution of health topics
in tweets, is a promising research direction.

7 CONCLUSION

We develop methods to uncover ailments over time from
social media. We formulated health transition detection
and prediction problems and proposed two models to
solve them. Detection is addressed with TM–ATAM, a
granularity-based model to conduct region-specific analysis
that leads to the identification of time periods and character-
izing homogeneous disease discourse, per region. Prediction
is addressed with T–ATAM, that treats time natively as a ran-
dom variable whose values are drawn from a multinomial
distribution. The fine-grained nature of T–ATAM results in
significant improvements in modeling and predicting tran-
sitions of health-related tweets. We believe our approach is
applicable to other domains with time-sensitive topics such
as disaster management and national security matters.
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