User Preference and Embedding Learning with Implicit Feedback for
Recommender Systems

Sumit Sidana®, Mikhail Trofimov®, Oleh Horodnytskyi¢, Charlotte Laclau®, Yury Maximov®d,
Massih-Reza Amini®

@ University Grenoble Alpes CNRS/LIG, France
bFederal Research Center "Computer Science and Control” of Russian Academy of Sciences
¢Skolkovo Institute of Science and Technology, Russia
@ Theoretical Division T-5/CNLS, Los Alamos National Laboratory, USA

Abstract

In this paper, we propose a novel ranking framework for collaborative filtering with the overall aim of
learning user preferences over items by minimizing a pairwise ranking loss. We show the minimization
problem involves dependent random variables and provide a theoretical analysis by proving the consistency
of the empirical risk minimization in the worst case where all users choose a minimal number of positive
and negative items. We further derive a Neural-Network model that jointly learns a new representation of
users and items in an embedded space as well as the preference relation of users over the pairs of items.
The learning objective is based on three scenarios of ranking losses that control the ability of the model
to maintain the ordering over the items induced from the users’ preferences, as well as, the capacity of
the dot-product defined in the learned embedded space to produce the ordering. The proposed model is
by nature suitable for implicit feedback and involves the estimation of only very few parameters. Through
extensive experiments on several real-world benchmarks on implicit data, we show the interest of learning
the preference and the embedding simultaneously when compared to learning those separately. We also
demonstrate that our approach is very competitive with the best state-of-the-art collaborative filtering
techniques proposed for implicit feedback.

1. Introduction

In the recent years, recommender systems (RS) have attracted a lot of interest in both industry and
academic research communities, mainly due to new challenges that the design of a decisive and efficient RS
presents. Given a set of customers (or users), the goal of RS is to provide a personalized recommendation
of products to users which would likely to be of their interest. Typical examples of applications include
the recommendation of movies (Netflix, Amazon Prime Video), music (Pandora), videos (YouTube), news
content (Outbrain) or advertisements (Google). The development of an efficient RS is critical for both the
company and the consumer perspective. On the one hand, users usually face a huge number of options: for
instance, Amazon proposes over 20,000 movies in its selection, and it is, therefore, essential to help them to
take the best possible decision by narrowing down the choices they have to make. On the other hand, major
companies report significant increase of their traffic and sales coming from personalized recommendations:
Amazon declares that recommendations generate 35% of its sales, two-thirds of the movies watched on
Netflix are recommended, and 28% of ChoiceStream users said that they would buy more music, provided
the fact that they meet their tastes and interests H.

*Corresponding Author: Massih-Reza Amini
Email address: Massih-Reza.AminiQuniv-grenoble-alpes.fr (Massih-Reza Amini)
1Talk of Xavier Amatriain - Recommender Systems - Machine Learning Summer School 2014 @ CMU.

Two main approaches have been proposed to tackle this problem [? |. The first one, referred to as
Content-Based recommendation technique [?] makes use of existing contextual information about the
users (e.g. demographic information) or items (e.g. textual description) for recommendation. The second
approach referred to as collaborative filtering (CF) and undoubtedly the most popular one, relies on the
past interactions and recommends items to users based on the feedback provided by other similar users.
Feedback can be explicit, in the form of ratings; or ¢mplicit, which includes clicks, browsing over an item
or listening to a song. Such implicit feedback is readily available in abundance but is more challenging to
take into account as it does not clearly depict the preference of a user for an item. Explicit feedback, on
the other hand, is very hard to get in abundance. The adaptation of CF systems designed for another type
of feedback has been shown to be sub-optimal as the basic hypothesis of these systems inherently depends
on the nature of the feedback [?]. Further, learning a suitable representation of users and items have been
shown to be the bottleneck of these systems [?], mostly in the cases where contextual information over
users and items, which allows having a richer representation, is unavailable.

In this paper, we are interested in the learning of user preferences mostly provided in the form of implicit
feedback in RS. Our aim is twofold and concerns:

1. the development of a theoretical framework for learning user preference in recommender systems that
justifies the learnability of pairwise ranking models proposed until now for this task, and its analysis
in the worst case where all users provide a minimum of positive/negative feedback;

2. the design of a new neural-network model based on this framework that jointly learns the preference
of users over pairs of items and their representations in an embedded space without requiring any
contextual information.

We extensively validate our proposed approach over five publicly available benchmarks with implicit
feedback by comparing it to state of the art models.

The remainder of this paper is organized as follows. In Section E, we provide an overview of existing
related methods. Then, Section B defines the notations and the proposed framework and analyze its the-
oretical properties. Section Y is devoted to numerical experiments on five real-world benchmark datasets
including binarized versions of MovieLens and Netflix, and two real data sets on online advertising. We
compare different versions of our model with state-of-the-art methods showing the appropriateness of our
contribution. Finally, we summarize the study and give possible future research perspectives in Section fj.

2. State-of-the-art

This section provides an overview of the state-of-the-art approaches that are the most similar to ours.

2.1. Neural Language Models

Neural language models have proven themselves to be successful in many natural language processing
tasks including speech recognition, information retrieval, and sentiment analysis. These models are based
on a distributional hypothesis stating that words, occurring in the same context with the same frequency,
are similar. To capture such similarities, these approaches propose to embed the word distribution into a
low-dimensional continuous space using Neural Networks, leading to the development of several powerful
and highly scalable language models such as the word2vec Skip-Gram (SG) model [? ? |.

The recent work of [? | has shown new opportunities to extend the word representation learning to
characterize more complicated pieces of information. This paper established the equivalence between the
SG model with a negative sampling and implicitly factorizing point-wise mutual information (PMI) matrix.
Further, they demonstrated that word embedding could be applied to different types of data, provided that
it is possible to design an appropriate context matrix for them. This idea has been successfully applied to
recommendation systems where different approaches attempted to learn representations of items and users
in an embedded space to meet the problem of recommendation more efficiently [? ? ? .

In [?], the authors used a bag-of-word vector representation of items and users, from which the la-
tent representations of latter are learned through word-2-vec. [?] proposed a model that relies on the
intuitive idea that the pairs of items which are scored in the same way by different users are similar. The
approach reduces to finding both the latent representations of users and items, with the traditional Matrix
Factorization (MF) approach, and simultaneously learning item embeddings using a co-occurrence shifted
positive PMI (SPPMI) matrix defined by items and their context. The latter is used as a regularization
term in the traditional objective function of MF. Similarly, in [? | the authors proposed Prod2Vec, which
embeds items using a Neural-Network language model applied to a time series of user purchases. This model
was further extended in [? | who, by defining appropriate context matrices, proposed a new model called
Meta-Prod2Vec. Their approach learns a representation of both items and side information available in
the system. The embedding of additional information is further used to regularize the item embedding.
Inspired by the concept of a sequence of words; the approach proposed by [? | defined the consumption of
items by users as trajectories. Then, the embedding of items is learned using the SG model, and the users’
embeddings are further used to predict the next item in the trajectory. In these approaches, the learning of
item and user representations are employed to predict with predefined or fixed similarity functions (such as
dot-products) in the embedded space.

Although learning user and item embeedings seem to be unavoidable in RS, as the interaction between
users and items is generally the only available source of information characterizing them, many studies have
pointed out that the second ingredient, making RS to be efficient, is the learning of user’s preference.

2.2. Learning-to-Rank based Neural Networks for Recommender systems

Motivated by automatically tuning the parameters involved in the combination of different scoring func-
tions, Learning-to-Rank approaches were initially developed for Information Retrieval (IR) tasks and are
grouped into three main categories: pointwise, listwise and pairwise [?].

Pointwise approaches [? ? | assume that each queried document pair has an ordinal score. The ranking
is then stated as a regression problem, in which the rank value of each document is estimated as an absolute
quantity. In the case where relevance judgments are given as pairwise preferences (rather than relevance
degrees), it is usually not straightforward to apply these algorithms for learning. Moreover, pointwise
techniques do not consider the inter-dependency among documents, so that the position of documents in the
final ranked list is missing in the regression-like loss functions used for parameter tuning. On the other hand,
listwise approaches [? 7 7] take the entire ranked list of documents for each query as a training instance.
As a direct consequence, these approaches are able to differentiate documents from different queries and
consider their position in the output ranked list at the training stage. Listwise techniques aim to optimize a
ranking measure directly, so they generally face a complex optimization problem dealing with non-convex,
non-differentiable and discontinuous functions. Finally, in pairwise approaches, [? 7 ? ? | the ranked list is
decomposed into a set of document pairs. The ranking is therefore considered as the classification of pairs
of documents, such that a classifier is trained by minimizing the number of misorderings in ranking. In the
test phase, the classifier assigns a positive or negative class label to a document pair that indicates which of
the documents in the pair should be better ranked than the other one.

Perhaps the first Neural Network model for ranking is RankProp, proposed initially by [?]. RankProp is
a pointwise approach that alternates between two phases of learning the desired real outputs by minimizing
a Mean Squared Error (MSE) objective, and a modification of the desired values themselves to reflect the
current ranking given by the net. Later on [?] proposed RankNet, a pairwise approach, that learns a
preference function by minimizing a cross entropy cost over the pairs of relevant and irrelevant examples.
SortNet proposed by [? ? | also learns a preference function by minimizing a ranking loss over the pairs of
examples that are selected iteratively with the overall aim of maximizing the quality of the ranking. The
three approaches above consider the problem of Learning-to-Rank for IR and without learning an embedding.

The architecture of the propsed approach bears similarity with the wide and deep learning model which
has also two components [? |. As in our case, the wide part is a linear model and learns dense embeddings
of the users and items and is said to take care of memorization. The prediction function is the dot product

of weights learned and user and item embeddings. The deep part is a fully connected deep neural network
and takes care of generalization. As in our case, the training takes place jointly.

The key difference, though, lies in the prediction function. In wide and deep learning, the goal is to
predict a score (as in pointwise ranking) which is very different from the pairwise learning to rank function
that is in our model. In recent years, most focus has been put on the development of pairwise approaches
as they have been shown to be more efficient than pointwise approaches for recommender systems.

Perhaps, the closest work to ours is [?], in which authors learn efficient user and item embedding. Then,
the respective embeddings are concatenated and goes through a dense layer consisting of fully connected
layers. But, no loss focusing on quality of representations is employed. In [?], authors develop deep
learning techniques for textual data, particularly reviews and use ratings based feedback to optimize. It is
not applicable to implicit feedback, such as clicks. [?] use heterogeneous sources such as review text, item
image and rating in order to learn good representation of the item for doing top-n recommendation. While
being very effective model, it does require heterogeneous sources for it to be effective. Finally, [?] use wide
and deep learning, to combine the benefits of memorization and generalization for recommender systems.

In this study we tackle the consistency of the empirical risk minimization principle used to learn pairwise
ranking models for RS and propose a Neural Network model, with a composite objective loss, which jointly
influences the learning of the embeddings and the scoring function.

3. Framework and Model

We denote by U C N (resp. Z C N) the set of indexes over users (resp. the set of indexes over items).
Further, for each user u € U, we consider two subsets of items Z, C Z and Z;7 C Z such that;

i) I, # @ and I} # &,

i1) for any pair of items (i,4') € Z,7 x Z,; u has a preference, symbolized by » . Hence i » i implies
that, user u prefers item 4 over item 7’.

From this preference relation, a desired output y; .+ € {—1,4+1} is defined over each triplet (i,u,i) €
Ih xU XTI, as:

(1 it (1)
Yiwi’ =1 _1 otherwise.

3.1. Learning objective

Following [?], we consider the learning task that consists in finding a scoring function f from a class of
functions F = {f | f: Z x U x T — R} that minimizes the ranking loss:

1
L(f)=E I Z Z Ly, . o fGuin<o| (2)

€T i eTy

where |.| measures the cardinality of sets and 1 is the indicator function which is equal to 1, if the predicate
7 is true, and 0 otherwise. Many approaches tackled this problem by proposing to learn a mapping function
®: U x T — X C RF that projects a pair of user and item indices into a feature space of dimension k, and
a function g : X x X — R such that each function f € F can be decomposed as:

Yuel,(i,i') e T x I, f(i,u,i’) = g(®(u,i)) — g(®(u,i’)).

The previous loss (E) is a pairwise ranking loss, and it is related to the Area under the ROC curve [?].
The learning objective is, hence, to find a function f from the class of functions F with a small expected
risk, by minimizing the empirical error over a training set

S = {(Zi,u,i/ = (i7u7i/)5 yi,u,i’) | u < Z/{7 (177’,) € qu X I;}a
4

constituted over N users, Y = {1,..., N}, and their respective preferences over M items, Z = {1,..., M}
and is given by:

U - N Z |I+ \I | Z Z Ly, , o (f(iuin)<0

i€TE eIy

1
= Z Nvsilinl ‘I | DD Ly (0@ (i) —a(@(w.ir)))<0- (3)

i€TH i eTy

The pairwise ranking loss (E) is equivalent to a classification loss over the pairs of examples. By this, the
aim of the prediction function is not to predict the score (41, relevant, or, -1; irrelevant), but rather to
preserve the relative order of preferences between two ratings given by the same user. Although different
studies have shown the efficiency of jointly learning an adapted users and items representations, as well as
the scoring function g, [?]. However this minimization problem involves dependent random variables as for
each user u and item ¢; all comparisons g(®(u,?)) — g(®(u,i’));i’ € Z, involved in the empirical error (J)
share the same observation ®(u,1).

To the best of our knowledge, there is no study which considered the consistency of the empirical risk
minimization principle that is generally used for this task. To tackle this problem, we build on [?] and
derive generalization error bounds for bounding the error (P) with respect to (). The idea is based on
graph coloring, introduced by [?], and which consists in dividing a graph @ = (V,) that links dependent
variables represented by its nodes V into J sets of independent variables, called the exact proper fractional
cover of) and defined as:

Definition 1 (Exact proper fractional cover of 2, [?]). Let Q = (V, &) be a graph. C = {(Mj,w;)}jeq1,....73»
for some positive integer J, with M; CV and w; € [0,1] is an exact proper fractional cover of Q, if: 1) it
is proper: Vj, M; is an independent set, i.e., there is no connections between vertices in M;; ii) it is an
exact fractional cover of Q: Vv € V, Zj:veMj wj = 1.

The weight W (C) of C is given by: W(C) = ijl w;j and the minimum weight x*(Q) = mineex o) W(C)
over the set K(Q2) of all exact proper fractional covers of) is the fractional chromatic number of Q.

Figure [I| depicts an exact proper fractional cover corresponding to the problem we consider for a toy
problem with M = 5 items and a user u, preferring |Z7| = 2 items over |Z,| = 3 other ones. In this
case, the nodes of the dependency graph correspond to 6 pairs constituted by; pairs of the user and each
of the preferred items, with the pairs constituted by the user and each of the no preferred items, involved
in the empirical loss (E) Among all the sets containing independent pairs of examples, the one shown in
Figure [l,(c) is the exact proper fractional cover of Q and the fractional chromatic number is, in this case,
X(Q) =7, =3

By mixing the idea of graph coloring with the Laplace transform, Hoeffding like concentration inequalities
for the sum of dependent random variables are proposed by [?]. In [?] this result is extended to provide a
generalization of the bounded differences inequality of [?] to the case of interdependent random variables.
This extension then paved the way for the definition of the fractional Rademacher complexity that generalizes
the idea of Rademacher complexity and allows one to derive generalization bounds for scenarios where the
training data are made of dependent data.

In the worst case scenario where all users provide the lowest interactions over the items, which constitutes
the bottleneck of all recommendation systems:

Vue 8|7, | = ni = min|T,l, and |Z}| = nf = min|T5),

the empirical loss (E) is upper-bounded by:

LUFS)SLuf,S)=c—5 DD > Ly . ofiai<o- (4)

n
Tl Tx weU eIt i'eTy

5

. ‘ = B(u, 1)
5 = d(u,?2)

Zil=2 |7;]=3 x; = ®(u, 3)
O = d(u,4)

| x5 = ®(u,b)

(T x7) (3%, 12)
(0 (8,5

) (5, 57) o [t e

Figure 1: A toy problem with 1 user who prefers |Z;7| = 2 items over |Z; | = 3 other ones (top). The dyadic representation
of pairs constituted with the representation of the user and each of the representations of preferred and non-preferred items
(middle). A different covering of the dependent set, (a) and (b); as well as the exact proper fractional cover, (c), corresponding
to the smallest disjoint sets containing independent pairs.

Following [? , Proposition 4], a generalization error bound can be derived for the second term of
the inequality above based on local Rademacher Complexities that implies second-order (i.e. variance)

information inducing faster convergence rates.

For sake of presentation and in order to be in line with the learning representations of users and items in
an embedded space introduced in Section @, let us consider the kernel-based hypotheses with x : X x X — R
a positive semi-definite (PSD) kernel and @ : U x T — X its associated feature mapping function. Further
we consider linear functions in the feature space with bounded norm:

G5 ={gwo ®: (u,i) €U X T = (w, ®(u, 1)) | [lw]|| < B}

where w is the weight vector defining the kernel-based hypotheses and (-, -) denotes the dot product. We
further define the following associated function class:

F =A{2Ziwi = (1,u,7) = G (P(u, 7)) — g (P(u, 7)) | 9w € GB},
and the parameterized family Fp , which, for » > 0, is defined as:
-/—"B,r = {f : f S fov[f] = Vz,y[]lyf(z)] < T},

6

where V[.] denotes the variance. The fractional Rademacher complexity introduced in [?] entails our
analysis:

2 -
gcif:f]EEE sup Eaf(2a),
S() m gjzl . fe]TaS;;j ()
z, €S

where m = N x n} x n; is the total number of triplets z in the training set and (&;)™, is a sequence of
independent Rademacher variables verifying P(§; = 1) = P(§; = —1) = 1.

Theorem 1. Let U be a set of M independent users, such that each user w € U prefers n} items over n;
ones in a predefined set of T items. Let S = {(Zjui = (i,u,7), Vi) | w € U, (1,7") € TF x I} be the
associated training set, then for any 1 > § > 0 the following generalization bound holds for all f € Fp , with
probability at least 1 — 0

5 2BC(S) 5 ([2Be(S) r log§ 25log
< el —_ -
L(f) = Lol 5) + Nni +2< Nni T3 ni T8 nt’

where €(S) = \/nl_ Z;;l Epm; [ZQGM]. d(za,za))}, Zo = (la,Ua,ih) and also d(2z4,26) = K(P,¢) +
* Zo,ES

K(9',¢) = 26(¢, @) with ¢ = P(uq,ia), ¢' = P(Ua, iy).
The proof is given in Appendix.

This result suggests that :

o even though the training set S contains interdependent observations; following [? , theorem 2.1, p. 38],
theorem [l gives insights on the consistency of the empirical risk minimization principle with respect
to the minimization of (Eq.),

e in the case where the feature space X C RF is of finite dimension; lower values of k involves lower
kernel estimation and hence lower complexity term €(.S) which implies a tighter generalization bound.

3.2. A Neural Network model to learn user preference

In this section we present a Neural Network, denoted as NERVE, to learn the embedding representation
jointly, ®(.), as well as the scoring function, f(.), defined in the previous section. The input of the network
is a triplet (¢, u,:") composed by the indexes of an item ¢, a user u and a second item #’; such that the user
u has a preference over the pair of items (¢,4") expressed by the desired output y; ., /, defined with respect
to the preference relation > (Eq. [l). Each index in the triplet is then transformed to a corresponding
binary indicator vector i, u, and i’ having all its characteristics equal to 0 except the one that indicates the
position of the user or the items in its respective set, which is equal to 1. Hence, the following one-hot vector
corresponds to the binary vector representation of user u € U:

1 1

IR
0 0

y ey

- i
..., 0

)))

= e

).

The network entails then three successive layers, namely Embedding, Mapping and Dense hidden layers
depicted in Figure E

)

e The Embedding layer transforms the sparse binary representations of the user and each of the items
to denser real-valued vectors. We denote by U, and V; the transformed vectors of user u and item
i; and U = (U,)yey and V = (V;);ez the corresponding matrices. Note that as the binary indicator
vectors of users and items contain one single non-null characteristic, each entry of the corresponding
dense vector in the Embedding layer is connected by only one weight to that characteristic.

7

Input Binarization Embedding Mapping Dense g Output
®(.,.)

9(®(u, 7)) — g(®(u,7"))

Figure 2: The architecture of NERVE trained to reflect the preference of a user u over a pair of items 7 and .

e The Mapping layer is composed of two groups of units each being obtained from the element-wise
product between the user representation vector U, of a user u and a corresponding item representation
vector V; of an item ¢ inducing the feature representation of the pair (u,); ®(u,).

e Each of these units is also fully connected to the units of a Dense layer composed of successive hidden
layers (see Section {f for more details related to the number of hidden units and the activation function
used in this layer).

The model is trained such that the output of each of the dense layers reflects the relationship between
the corresponding item and the user and is mathematically defined by a multivariate real-valued function
g(.). Hence, for an input (i,u,i’), the output of each of the dense layers is a real-value score that reflects
a preference associated to the corresponding pair (u,?) or (u,i) (i.e. g(®(u,?)) or g(®(u,i’))). Finally the
prediction given by NERVE for an input (i, w, ') is:

fiyu, i) = g(@(u, i) — g(P(u,')). (5)

3.8. Algorithmic implementation

The main difference with other approaches which also proposed to learn jointly the user and items
embedding and the scoring function g [? ?], is that here we consider a composite pairwise ranking loss
defined as :

£c7p(f7UaV7$) =aLl.(f,S)+ (1 —a)[,p(U,V,S), (6)

where o € [0,1] is a real-valued parameter and the first term reflects the ability of the non-linear trans-
formation of user and item feature representations, g(®(.,.)), to respect the relative ordering of items with
respect to users’ preferences:

1 i'))— u,t
Lo(f,S) = E Z log(1 + eYi,u,i (9(2(w,")) =g (P(u,)))_ (7)

(Zi u,i? Yi,u,it JES

The second term focuses on the quality of the compact dense vector representations of items and users
that have to be found, as measured by the ability of the dot-product in the resulting embedded vector space
to respect the relative ordering of preferred items by users:

1 LUT(V,, -V,
£o(0,7,8) = 1D [log(1+ e Ve Ve Y0 AU+ Vi B+IVAIB) (8)
s
where A is a regularization parameter for the user and items norms.
The purpose of conjugating between the two losses is to see the impact of each on the learning of the
final scoring function.

Training phase

The empirical minimization of the ranking losses is carried out by back-propagating [? | the error-
gradients from the output to both the deep and embedding parts of the model using mini-batch stochastic
optimization (Algorithm m)

During training, the input layer takes a random set S, of size n of interactions by building triplets (7, u, i)
based on this set and generating a sparse representation from id’s vector corresponding to the picked user
and the pair of items. The binary vectors of the examples in S,, are then propagated throughout the network,
and the ranking error (Eq. E) is back-propagated.

Algorithm 1 NERvVE: Learning phase

Input:
T: maximal number of epochs
A set of users i = {1,...,N}
A set of items T = {1,..., M}
forep=1,...,T
Randomly sample a mini-batch Sn C S of size n from the original user-item matrix
for all ((¢,u,4'),Yiu,i) € Sn
Propagate (i,u,i') from the input to the output.
Retro-propagate the pairwise ranking error (Eq. (B)) estimated over S,.
Output: Users and items latent feature matrices U,V and the model weights.

Model Testing

As for the prediction phase, shown in Algorithm E, a ranked list N, of the k < M preferred items for
each user in the test set is maintained while retrieving the set Z. Given the latent representations of the
triplets, and the weights learned; the two first items in 7 are placed in M, ; in a way which ensures that
preferred one, i*, is in the first position. Then, the algorithm retrieves the next item, ¢ € Z by comparing it to
1*. This step is simply carried out by comparing the model’s output over the concatenated binary indicator
vectors of (i*,u,4) and (i,u,i*). Hence, if f(i,u,i*) > f(i*,u,), which from Equation (p) is equivalent to
g(®(u,2)) > g(P(u,i*)), then i is predicted to be preferred over i*; ¢ » ¢*; and it is put at the first place
instead of ¢* in M, . Here we assume that the predicted preference relation 7 is transitive, which then
ensures that the predicted order in the list is respected. Otherwise, if i* is predicted to be preferred over i,
then i is compared to the second preferred item in the list, using the model’ prediction as before, and so on.
The new item, ¢, is inserted in 9, ;, in the case if it is found to be preferred over another item in N, ;.

By repeating the process until the end of Z, we obtain a ranked list of the k most preferred items for
the user u. Algorithm P does not require an ordering of the whole set of items, as also in most cases we
are just interested in the relevancy of the top-ranked items for assessing the quality of a model. Further, its
complexity is at most O(k x M) which is convenient in the case where M >> 1 and sufficiently small k (k = 10
in our experiments). The merits of a similar algorithm have been discussed by [?]| but, as pointed out
above, the basic assumption for inserting a new item in the ranked list 9, is that the predicted preference
relation induced by the model should be transitive, which may not hold in general.

9

Algorithm 2 NERvE : Testing phase

Input:
A user u € U; A set of items Z = {1,...,M};
A set containing the k preferred items in Z by u;
9’tu,k — I
f: the output of Algorithm m;
Apply f to the first two items of Z and, note the preferred one ¢* and place it at the top of 9, 1;
fori=3,.... M
if g(®(u,4)) > g(®(u,i*)) then
Add i to 9,5 at rank 1
else
j+1
while j <k AND g(®(u,1)) < g(®(u,iy))) // where i, =, ()
j7+1
if j < k then
Insert ¢ in M, 5 at rank j
Output: 9, ;

In our experiments, we also tested a more conventional inference algorithm, which for a given user w,
consists in the ordering of items in Z with respect to the output provided by the function g, and we did not
find any substantial difference in the performance of NERVE , as presented in the following section.

4. Experimental Results

We conducted several experiments aimed at evaluating how the simultaneous learning of user and item
representations, as well as the preferences of users over items, can be efficiently handled with NERVE . To
this end, we considered five real-world benchmarks commonly used for collaborative filtering. We validated
our approach concerning different hyper-parameters that impact the accuracy of the model and compare it
with competitive state-of-the-art approaches.

We run all experiments on a cluster of five 32 core Intel Xeon @ 2.6Ghz CPU (with 20MB cache per core)
systems with 256 Giga RAM running Debian GNU/Linux 8.6 (wheezy) operating system. All subsequently
discussed components were implemented in Python3 using the TensorFlow library with version 1.4.0.

4.1. Datasets

The datasets that were used in our experiments are :

« MovieLensH 100K (ML-100K), MoviELENS 1M (ML-1M) [?] and NeTFLIxH which consist of user-
movie ratings, on a scale of one to five, collected from a movie recommendation service and the Netflix
company. The latter was released to support the Netflix Prize competition®. For all three datasets,
we only keep users who have rated at least five movies and remove users who gave the same rating for
all movies. In addition, for NETFLIX, we take a subset of the original data and randomly sample 20%
of the users and 20% of the items. In the following experiments, as we only compare with approaches
developed for the ranking purposes and our model is designed to handle implicit feedback, these three
data sets are made binary such that a rating higher or equal to 4 is set to 1 and 0 otherwise.

2https://www.tensorflow.org/.

Shttps://movielens.org/
4http://academictorrents.com/details/9b13183dc4d60676b773c9e2cd6de5e5542cee9a
5B. James and L. Stan, The Netflix Prize (2007).

10

https://www.tensorflow.org/
https://movielens.org/
http://academictorrents.com/details/9b13183dc4d60676b773c9e2cd6de5e5542cee9a

e The KASANDRE dataset contains the interactions and clicks done by the users of Kelkoo, an online
advertising platform from Germany. It gathers 17,764,280 interactions from 521,685 users on 2,299,713
offers belonging to 272 categories and spanning across 801 merchants [? |. For KASANDR, we remove
users who gave the same rating for all offers, as well as all those who never clicked or always clicked
on every offer showed to them.

e The PANDORB collection is another publicly available dataset for online recommendation [? | provided
by Purch (http://www.purch.com/). The dataset records 2,073,379 clicks generated by 177,366 users
of one of the Purch’s high-tech website over 9,077 ads they have been shown during one month.

Basic statistics on these collections after pre-processing, as discussed above, are presented in Table E.q

Table 1: Statistics of various collections used in our experiments after preprocessing.

Dataset # of users # of items # of interactions Sparsity
ML-100K 943 1,682 100,000 93.685%
ML-1M 6,040 3,706 1,000,209 95.530%
NETFLIX 90,137 3,560 4,188,098 98.700%
KASANDR 25,848 1,513,038 9,489,273 99.976%
PANDOR 5,894,431 14,716 48,754,927 99.873%

4.2. Ezxperimental set-up
Compared baselines. In order to validate the framework defined in the previous section, we propose
to compare the following approaches.

e Co-Factor [?], developed for implicit feedback, constraints the objective of matrix factorization to use
jointly item representations with a factorized shifted positive pointwise mutual information matrix of
item co-occurrence counts. The model was found to outperform WMF [? | also proposed for implicit
feedback.

o LightFM [? | was first proposed to deal with the problem of cold-start using meta information. As
with our approach, it relies on learning the embedding of users and items with the Skip-gram model
but optimizes a pointwise based likelihood ranking loss depending on the dot product of user and item
representations, adjusted by user and item feature biases.

o Neural Collaborative Filtering (NCF)E[? |, that jointly learns the user and items embeddings and the
scoring function using Neural Networks, by minimizing a least squared error.

e Wide & Deep (W&D)E[? |; that jointly learns a linear model component with feature transformation
and a neural network component with embeddings.

e BPR-MF [? | provides an optimization criterion based on implicit feedback; which is the maximum
posterior estimator derived from a Bayesian analysis of the pairwise ranking problem and proposes an
algorithm based on Stochastic Gradient Descent to optimize it. The model can further be extended
to the explicit feedback case and is close to NERVE,. That main difference between the two is that in
the latter there is a dense layer with rectified linear units in the dense layers; between the mapping
layer and the estimation of the scoring function g.

Shttps://archive.ics.uci.edu/ml/datasets/KASANDR
Thttps://archive.ics.uci.edu/ml/datasets/PANDOR
8https://github.com/hexiangnan/neural_collaborative_filtering
9https://github.com/tensorflow/models/tree/master/official/ri/wide_deep

11

http://www.purch.com/
https://archive.ics.uci.edu/ml/datasets/KASANDR
https://archive.ics.uci.edu/ml/datasets/PANDOR
https://github.com/hexiangnan/neural_collaborative_filtering
https://github.com/tensorflow/models/tree/master/official/r1/wide_deep

. NERVEpE focuses on the quality of the latent representation of users and items by learning the preference
and the representation through the ranking loss £, (Eq. (B))

e NERVE, focuses on the accuracy of the score obtained at the output of the framework and therefore
learns the preference and the representation through the ranking loss £. (Eq. ([7)).

o NERVE., uses a linear combination of £, and L. as the objective function, with oo = %

Evaluation protocol. For each dataset, we sort the interactions according to time and take 80% for
training the model and the remaining 20% for testing it. Besides, we remove all users and offers which do
not occur during the training phase. We study the real-world scenario, setting of predicting the right order
over the set of all items for each user.

All comparisons are made based on common ranking metrics, namely the Mean Average Precision (MAP)
and the mean Normalized Discounted Cumulative Gain (NDCG). First, let us recall that the Average
Precision (APQ/) is defined over the precision, Pr (fraction of recommended items clicked by the user) of
clicked items, at rank /.

14
APQL = = " r; Pr(j),
j=1

and the Normalized Discounted Cumulative Gain (nDCG) is defined as :

DCG@/
IDCG@/’

where the relevance judgment at rank j, r;, is binary (i.e. equal to 1 when the 4t top ranked item is clicked

| =

nDCGQ/! =

or preferred, and 0 otherwise), DCGQ¢ = ry + Z§:2 b;ﬁ is the discounted cumulative gain at rank ¢, and
IDCG@/ is the ideal discounted cumulative gain till position £. Then, the means of these AP’s and nDCG’s
across all users are the MAP and the NDCG. In the following results, we report both measures at ranks

¢ =1 and ¢ = 10.

Hyper-parameters tuning. For all datasets, hyper-parameters tuning is done on a separate validation
set among the following sets.

o The size of the embedding is chosen among k € {1,...,20}.

e We use {5 regularization on the embeddings and choose the hyperparameter A from the set : A\ €
{1074,1073,5.103,10~2,5.10~2}.

e We run NERVE with 1 hidden layer with relu activation functions, where the number of hidden units is
chosen in {16, 32, 64}.

o In order to train NERVE, we use ADAM [? | and found the learning rate n = le — 3 to be more efficient
for all our settings. For other parameters involved in Adam, i.e., the exponential decay rates for the
moment estimates, we keep the default values (31 = 0.9, B2 = 0.999 and € = 1078).

e Finally, we fix the number of epochs to be T" = 10,000 in advance and the size of mini-batches to
n = 512.

Best hyperparameters values for NERVE,, NERvVE. and NERvE., with respect to MAP@/ are reported
in Table P. It comes out that best results are generally obtained with small sizes of an item and user
embedded vector spaces k which support our theoretical analysis where we found that small & induces
smaller generalization bounds. This observation on the dimension of embedding is also in agreement with
the conclusion of [?], which uses the same technique for representation learning. We exhibit the impact
of the value of the hyper-parameter « € [0,1] (Eq. (E)) on ML-1M and PANDOR datasets in the learnin
of model parameters in Figure B. As expected the conjunction of both ranking losses (Eq. []) and (Eq. B%
corresponding to situations where o # 0 and a # 1 gives always the best results.

O0https://github.com/sumitsidana/NERVE

12

https://github.com/sumitsidana/NERvE

Table 2: Best parameters for NERVE,, NERvE. and NERvE.,; k denotes the dimension of embeddings, A the regularization
parameter. We also report the # of hidden units per layer.

ML-100K ML-1M NETFLIX KASANDR PANDOR
NERVE, NERVE, NERVE., | NERVE, NERVE, NERVE,., | NERVE, NERVE, NERVE., | NERVE, NERvE, NERVE,, | NERVE, NERvE, NERVE,,
k 15 5 8 2 11 2 3 13 1 4 16 14 19 15 18
A 1073 1073 1073 51072 1074 1073 1074 1073 1073 1073 1074 51072 | 5.107% 5.107* 5.1072
units 32 16 16 32 64 32 32 64 64 32 64 64 64 64 64
0.12 - -
0.1 =
81072]
6-1072]
4-1072]
MAP@1 MAP@1
2.10-2 H —— MAP@5 4 2-107°[|—— MAP@5 1
—— MAPQ@10 0 —e— MAP@10
= T | | | = C T [[[|
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
[e% «
(a) ML-1M (b) PANDOR
Figure 3: MAPQ1, MAPQ@5, MAP@I10 as a function of the value of o for ML-1M, and PANDOR.
4.3. Results

Hereafter, we compare and summarize the performance of NERVE with the baseline methods on various
datasets. Since the prediction on all offers is more realistic setting, and predicting on shown offers introduces
the bias of the algorithm used to show offers, we compute the results of predicting over all offers of the catalog
for all baselines.

Empirically, we observed that the version of NERVE, , where both L. and £, have an equal weight while
training gives better results on average, and we decided to only report these results later.

Table ?7? reports all results. Also, in each case, we statistically compare the performance of each algo-
rithm, and we use boldface to indicate the highest performance, and the symbol + indicates that performance
is significantly worse than the best result, according to a Wilcoxon rank sum test used at a p-value threshold
of 0.01 [?].

When the prediction is made over all offers (see Table ??), we can make two observations. First, all
the algorithms encounter an extreme drop in their performance in terms of MAP. Second, NERVE framework
significantly outperforms all other algorithms on all datasets, and this difference is all the more important
on KASANDR, where for instance NERVE, ,, is in average 15 times more efficient.

Comparisons with pointwise ranking approaches. CoFactor, LightFM and NCF are pointwise ranking models
and, in the majority of cases, they perform less than pairwise approaches on all datasets regarding both
performance measures MAP and NDCG. These results are in line with other studies that compared these
two approaches for RS and previously presented in [? ?]. The common point between these pointwise
models is that they all learn users and items’ embeddings (using neural networks or not). On KASANDR
and PANDOR datasets which are larger than the other collections; NN based models (i.e. NCF and W&D)
are more efficient than CoFactor and LightF'M. These results suggest that with sufficient data, NN are able
to learn user and item representations that are more robust regarding the related scoring function in the
embedded space for implicit feedback.

Comparisons with BPR-MF. BPR-MF is a pairwise non-neural network approach and fails to capture the
non-linearity of user-item interactions. Since NERVE models user-item representations and minimize pairwise
ranking loss simultaneously using a dense, fully connected network, it is able to learn non-linear relationships
between users and item interactions and hence able to outperform BPR-MF considerably.

13

Comparison between NERVE versions. One can note that while optimizing ranking losses by Eq. (E) or Eq.
() or Eq. (B), we simultaneously learn representation and preference function; the main difference is the
amount of emphasis we put in learning one or another.

Results presented in table 7?7 show that, on larger datasets, KASANDR and PANDOR where the number of
interactions are higher than in other collections, optimizing the linear combination of the pairwise-ranking
loss and the embedding loss (NERVE, ;) increases the quality of overall recommendations instead of optimizing
standalone losses to learn embeddings and the pairwise preference function.

5. Conclusion

We presented and analyzed a learning to rank framework for recommender systems which consists of
learning user preferences over items. We showed that the minimization of pairwise ranking loss over user
preferences involves dependent random variables and provided a theoretical analysis by proving the con-
sistency of the empirical risk minimization in the worst case where all users choose a minimal number of
positive and negative items. From this analysis, we then proposed NERVE, a new neural-network based model
for learning the user preference, where both the user’s and item’s representations and the function modeling
the user’s preference over pairs of items are learned simultaneously. The learning phase is guided using a
ranking objective that can capture the ranking ability of the prediction function as well as the expressiveness
of the learned embedded space, where the preference of users over items is respected by the dot product
function defined over that space. The training of NERVE is carried out using the back-propagation algorithm
in mini-batches defined over a user-item matrix containing implicit information in the form of subsets of
preferred and non-preferred items. The learning capability of the model over both prediction and repre-
sentation problems show their interconnection and also that the proposed double ranking objective allows
to conjugate them well. We assessed and validated the proposed approach through extensive experiments,
using five popular collections proposed for the task of recommendation. Furthermore, we propose to study
two different settings for the prediction phase and demonstrate that the performance of each approach is
strongly impacted by the set of items considered for making the prediction. We believe that our model is a
fresh departure from the models which learn pairwise ranking function without the knowledge of embeddings
or which learn embeddings without learning any pairwise ranking function.

For future work, we would like to extend NERVE to take into account additional contextual information
regarding users and/or items. More specifically, we are interested in the integration of data of different
natures, such as text or demographic information as it exists in the PANDOR dataset. We believe that this
information can be taken into account without much effort and by doing so, it is possible to improve the
performance of our approach and tackle the problem of providing recommendations for new users/items
at the same time, also known as the cold-start problem. The second important extension will be the
development of an online version of the proposed algorithm to make the approach suitable for real-time
applications and online advertising. Finally, we have shown that choosing a suitable «, which controls the
trade-off between ranking and embedding loss, greatly impact the performance of the proposed framework,
and we believe that an exciting extension will be to learn this hyper-parameter automatically and to make
it adaptive during the training phase.

Acknowledgements

This work was partly done under the Calypso project supported by the FEDER program from the Région
Auvergne-Rhéne-Alpes. The work of Yury Maximov at LANL was carried out under the auspices of the
National Nuclear Security Administration of the US Department of Energy under Contract No. DE-AC52-
06NA25396 and CNLS/LANL support.

Appendix

Theorem 1. Let U be a set of M independent users, such that each user u € U prefers n} items over n
ones in a predefined set of T items. Let S = {(Ziu,ir = (i,u,7),Yiwi) | w € U, (1,7") € TF x I} be the

14

associated training set, then for any 1 > § > 0 the following generalization bound holds for all f € Fg , with
probability at least 1 — 4

2Be&(S
£(f) < Nn()
5 % 25 log %
2 Nn* 48 nt’
where €(8) = ¢ LS B [ZMS d(za,za»], 20 = (i . 1) and
* Zo €

d(ZasZa) = K(P(Ua,ia), P(Ua,ia))

+ ’%((I)(UOM Z;)v (I)(’U,a, O/)) - 2’{(@(”07 7'04) (I)(uom Z;))
Proof. Let n} and respectively n, be the minimum number of preferred and non-preferred items for any
user u € U, then we have :

4 1
‘C’(fﬂ N jzz Z ylub/f(1u1

weU jeTt ireTy

(9)

=L.(f,5)

Following [

As the set of users U is supposed to be independent, the exact fractional cover of the dependency graph
such that cover sets which do not contain any items in common are joined together
o .

corresponding to the training set S will be the union of the exact fractional cover associated to each user

Proposition 4], for any 1 > § > 0 we have with probability at least 1 — §

Es[L.(f,)] — L.(f, S)

5 [2rlogi
< inf [(1 R . 0
< b { A+ B)Rs(Fp.r)

n +25 +1 1og%
4 ny 16 \ 3 B n

Ty
. : * 25 log §
The infimum is reached for g* = 4 /{5 xR Fa)
from equation (@), gives:

which by plugging it back into the upper-bound, and

£(f)§ﬁ*(f7)+9%S]:BT

1 1
1 95)pel
<\/mszr \/7) g5 25085

48 ni (10

J} and a € M;, let (uq,ia) and (uq,i,) be the first and the second pair

Now, for all j € {1 5
constructed from z,,, then from the bilinearity of dot product and the Cauchy-Schwartz inequality, Rs(Fp)

15

is upper-bounded by:

7E§ZEM sup < Z ga UQ,ZQ _(I)(uaviéx))>
feF

j=1 Br aeEM;
ZoES

S ZEM E§ Z ga uaala _(I)(uoui;))
aeM;
z, €S
1/2
2B -
< —]E . ’ ’
=« M€ Z §aba d(Za,Za)) ,
Jj=1 a0’ M

ZosZ o €5
where the last inequality follows from Jensen’s inequality and the concavity of the square root, and
A(Zo, Zor) = (P(Ua,ia) — PlUa,il), P(Ua,ia) — P(Ua,ih)) -
Further, for all j € {1,...,n;},a,0’ € M;,a # o'; we have E¢[(,€w] =0, [? , p. 91] so:

1/2

2B
EHS(]:B,r) S E EMj Z d(Za,Za»
Jj=1 aEM;
ZoES
1/2

_ 2Bn; Zni_ Er, | Y d(za,za))

m -
j=1 * aEM;
ZoES

By using Jensen’s inequality and the concavity of the square root once again, we finally get

Ny

2B 1
(]:B 7‘) = E ,EM]- E d(zcwzoz))
Nnf | < n;
=1 aeM;
Zo €S

The result follows from equations (@) and (@)

6. References

16

	Introduction
	State-of-the-art
	Neural Language Models
	Learning-to-Rank based Neural Networks for Recommender systems

	Framework and Model
	Learning objective
	A Neural Network model to learn user preference
	Algorithmic implementation

	Experimental Results
	Datasets
	Experimental set-up
	Results

	Conclusion
	References

