A combination of classification based methods for recommending tweets

SUMIT SIDANA, TAKEAWAY

CCS Concepts: » Information systems — Recommender systems; Learning to rank; « Computing methodologies — Learning

from implicit feedback.

ACM Reference Format:

Sumit Sidana, Takeaway. 2020. A combination of classification based methods for recommending tweets. In Proceedings of the
Recommender Systems Challenge 2020 (RecSysChallenge "20), September 26, 2020, Virtual Event, Brazil. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3415959.3415993

1 ABSTRACT

A 3 month long RecSys 2020 challenge! was organized by Twitter[1]. Various kinds of implicit feedback with varying
levels of sparsity were considered. In subsequent sections, I describe my approach to address this task, which helped
me land on the 4th place on the final leaderboard with the final score of 20. My team name was learner_recsys and link
to my code is present on GitHub?. This is detailed in Table 1. I used a combination of classification-based approaches,

content-based recommendations, and non-personalized baselines.

2 INTRODUCTION

Twitter has become a major source of information for analyzing all aspects of daily life. One can only imagine how
significant it may be to show the right set of tweets to the right set of users, so that they find the information conveyed
useful. Additionally, showing the right set of tweets, which user are going to engage with, ensures that users come back
to the platform, thus increasing trust in the system. To this end, Twitter conducted a 3 month long RecSys 2020 challenge.
For this challenge, Twitter released around 160 Million public tweets obtained by sub-sampling for 2 weeks. The dataset
contained user features, tweet features and engagement features. Characteristics of the data provided in the competition
are described in Table 2. The task in this challenge was to determine the probability that engaging_user_id is going to
engage with the content of engaged_user_id. This engagement was measured by different implicit feedback signals
namely reply, retweet, retweet_with_comment and like. Dataset also comprised of 100 million pseudo negatives, which
were randomly sampled. These positive and negative engagements, naturally give rise to a binary classification problem.
Given the metric (described in section 3), binary classification based methods proved to be most promising for this task
as I will describe in the subsequent sections. Methods used in this paper are the hybrids between classification based
approaches [4] and collaborative filtering based approaches [9] and this is the reason that they perform better than

pure classification or collaborative filtering based methods.

! (http://www.recsyschallenge.com/2020/)
2https://github.com/sumitsidana/recsys_challenge_2020

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

Manuscript submitted to ACM

https://doi.org/10.1145/3415959.3415993

RecSysChallenge ’20, September 26, 2020, Virtual Event, Brazil Sumit Sidana, Takeaway

Table 1. Details of my scores on the final leaderboard

team name learner_recsys

overall score 20

Engagement PRAUC RCE
reply 0.1161 10.42
retweet 0.4529 22.50
retweet_with_comment 0.5037 -0.04
like 0.7221 18.28
Position on Leaderboard 4

code https://github.com/sumitsidana/recsys_challenge_2020

Table 2. Overall dataset statistics. The number of tweets in each set in original data. These numbers denote the original numbers and
do not reflect the tweets that were being removed to preserve user privacy

Tweets in training set 148,075,238
Tweets in validation set 15,127,684
Tweets in test set 12,434,838
engaging_users in train 25,496,088
engaging_users in validation 7,662,966

engaging_users in test 6,561,475

new engaging_users in validation 2,030,122

new engaging_users in test 1,765,440

Languages 35

3 VALIDATION PROCEDURE AND METRICS

I first sorted the dataset on the basis of timestamp and then divided the training dataset into 90% training and the rest
of the 10% as validation set. I divided the training dataset in a way that all the 7 days are also included in the validation
set. This is because, the test set also contained engagement from all the 7 days. In this way I did my best to mimic the
given validation set so that I can monitor the performance of my models locally and tune parameters of my models.
After dividing training data further into train set and validation set, I was left with the following number of tweets
in train and validation set as shown in the Table 3. It should be noted that all the scores on rce and prauc from here
on-wards are the results, I obtained on the validation set I created out of training set. This is because the validation set,
I created out of training set was of the same distribution as the given validation set in the competition. Barring a few

exceptions, the performance on this validation set, which I created also showed the performance on the leaderboard.

3.1 Metrics

Two metrics were considered in the challenge. Relative cross entropy (RCE) and and area under precision recall curve

(PR-AUC) for each engagement.

A combination of classification based methods for recommending tweets RecSysChallenge ’20, September 26, 2020, Virtual Event, Brazil

Table 3. I divide the given training data into train-set and validation-set in order to monitor the performance of models locally and
tune parameters.

Tweets in given training data | 148,075,238
Tweets in train set 133,267,714
Tweets in validation set 14,807,524

Table 4. Priors for various actions.

Action Prior
Reply 0.028
Retweet 0.113
Retweet with Comment | 0.008
Like 0.439

3.2 Priors Baseline
I first set my priors baseline as follows. I compute the probability of the respective implicit feedback (reply, retweet,
retweet with comment and like) using the training data. This is the formula I use:

tweets with positive engagement
Total # of tweets

1)
This gave me the following priors for various actions as shown in the Table 4: The goal from here was to be able to

Table 5. Results with Content Based Recommendations using BERT

PRAUC
0.100

RCE
4.1

Action
Reply

outperform this simple baseline using advance recommendation models.

Table 6

Features used for reply with factorization machines
"tweet_type", "Language”, "enaged_with_user_id", "engaged_with_user_is_verified",

"engaging_user_id", "enaging_user_is_verified", "engagee_follows_engager", "engaged_with_user_follower_count",

"o non

"engaged_with_user_following_count", "enaging_user_follower_count", "enaging_user_following_count”

4 CONTENT BASED RECOMMENDATIONS USING BERT EMBEDDING

I applied basic content based recommendation techniques using BERT [5] embedding. I took the BERT embeddings of
given BERT tokens and treated each tweet as a 760 dimensional BERT embedding vector. From this vector, I created
user profile vector by averaging out vectors for all the tweets, which user had positive engagement with. For predicting
score of a given user, tweet pair, I took the dot product of user vector and tweet vector. This approach did not perform
very well for reply engagement as shown in the Table 5. This could have been owing to the fact the I did not do proper
scaling of the scores. But, I moved on to classification and collaborative filtering based approaches after content based

recommendations did not show promise.

RecSysChallenge ’20, September 26, 2020, Virtual Event, Brazil Sumit Sidana, Takeaway

Model PRAUC RCE
M 0.421 18.47
FFM (fields of Table 6) 0.46 23.62
FFM(fields of Table 6 + fasttext embeddings) 0.49 25.7

Table 7. Results with Field-aware Factorization Machines for ret weet feedback. Best results are shown in the bold

Model PRAUC RCE

™M 0.687 14.529
FFM (fields of Table 6) 0.724 21.188
FFM (fields of Table 6 + fasttext embeddings) 0.736 22.333

Table 8. Results with Field-aware Factorization Machines for like feedback

5 CLASSIFICATION BASED MODELS

In this task, we were given positive samples (tweets, which user engaged with) and negative samples (these were sampled
randomly). For test set, we were again asked to predict the probability of positive engagement. This paradigm naturally
gives rise to binary classification problem. Hence, I started applying the techniques applied to such recommendation

problems with binary labels.

5.1 Factorization Machines

FM [9] can be seen as a hybrid solution between classification approaches (such as Support Vector Machines [4]) and
factorization approaches (such as matrix factorization [7]). FM break the independence of interaction parameters by

factorizing them. The prediction function of FM is given by:

n
f(x) = + Zwix,- +
i=1

bias

Zzuikujk (x1,x5) 2
i=1 j>i k

n
i=1 j>i

interaction

Linear Regression factorization

Model PRAUC RCE
M 0.024 -5.63
FFM (fields of Table 6 0.018 3.04
FFM (fields of Table 6 + fasttext embeddings) 0.033 5.554
FFM (fields of Table 11) 0.047 6.067
Prior 0.504 -0.005

Table 9. Results with Field-aware Factorization Machines for ret weet with comment feedback

5.2 Field-Aware Factorization Machines

Field-Aware factorization machines (FFM) [8] provide an improvement over FM by learning different latent vectors
for different feature interactions. For FFM, I tried with features listed in the above section 6 as well as additional text

features.

A combination of classification based methods for recommending tweets RecSysChallenge ’20, September 26, 2020, Virtual Event, Brazil

Model PRAUC RCE
M 0.132 11.657
FFM (fields of Table 6) 0.133 13.763

Table 10. Results with Factorization Machines for reply feedback

Table 11

Features used for retweet-with-comment with FFM
language,engaged_with_user_id,engaging_user_id,day_of_tweet,
engaged_with_user_follower_count,engaged_with_user_following_count, engaging_user_follower_count,

engaging user_following_count

Parameter Values
Optimization method SGD
Dimension 4
Learning Rate 0.2
Regularization 0.0002
Iterations 3
threads 96

Table 12. Best Parameters for FFM for retweet

Parameter Values
Optimization method SGD
Dimension 4
Learning Rate 0.2
Regularization 0.0002
Iterations 2
threads 96

Table 13. Best Parameters for FFM for like

Parameter Values
Optimization method SGD
Dimension 1,1,16
Learning Rate 0.01
Regularization 0.028,0.01,0.01
Initial Standard Deviation 0.1

Iterations 10

Table 14. Best Parameters for FM for reply

5.2.1 Architecture of the machine. For implementation, I used the library by the original authors of FEM 3. All experi-
ments for FFM were run on aws instance having Ubuntu 18.04 having 96 cores and 192 GB of RAM.

3https://github.com/ycjuan/libffm

RecSysChallenge ’20, September 26, 2020, Virtual Event, Brazil Sumit Sidana, Takeaway

Parameter Values
Optimization method SGD
Dimension 4
Learning Rate 0.2
Regularization 0.00002
Iterations 2
threads 96

Table 15. Best Parameters for FFM for retweet-with-comment

5.2.2 FastText Embeddings. In this data, we were given BERT [5] tokens instead of raw text. I first converted the
tokens into raw text using the hugging face library *. I then converted these raw tweets into sentence embedding using
FastText library. So, eventually text of each tweet sentence was represented as 20 dimensional vector. Please also note
that I use different embeddings for different languages. This is due to the fact that FastText provides a different model
for each language and aligning embeddings of same word in a different language is a research problem in itself. So,
in the end each language has its own 20 dimensional space and all the tweets belonging to a particular language are
projected to its respective 20 dimensional space. I then proceed to augment my feature vectors as given in Table 6 with
these newly learned 20 dimensional feature vectors. In the end, I ended up using 42,964,698 features and 30 fields for
FFM. All the numerical fields were scaled between 0 and 1.

5.2.3 Best model for reply. For learning with Factorization machines, I used various learning methods such as markov
chain monte carlo (MCMC), Alternating Least Squares (ALS) and Stochastic Gradient Descent (SGD). SGD gave the best
results compared to other two and eventually gave the best results for reply engagement. I applied feature selection
methods such as Gini Index for categorical features and Lasso for numerical features. Eventually, best predictive features
used for reply are given in Table 6. The best parameters for reply are given in the Table 14 and results are shown in the
Table 10.

5.2.4 Best model for retweet. For retweet engagement, I first used the features in the Table 6 and used FM model to
learn the scores. It gave the prauc of 0.421 and rce of 18.47. Then, I experimented with FFM using the fields as in Table
6 and that boosted score of prauc at 0.46 and rce at 23.62. For the best model, I first used fields as shown in Table 6 and
in addition to those original fields, I added 20 extra fields corresponding to fasttext embeddings to represent the text,
which user interacted with. Adding these 20 extra fields gave an uplift in both prauc to 0.49 and RCE scores to 25.7. All
these results are summarized in Table 7. These fields, finally gave rise to 42,964,698 features. I did a grid search over

parameters and used early stopping for avoiding overfitting. Parameters used for the best model are shown in Table 12.

5.25 Best model for like. I tried both FM and FFM based models for like engagement. FM with the features of Table 6
gave prauc of 0.687 and rce of 14.529. FFM eventually performed better than FM with the same feauters giving prauc of
0.724 and rce of 21.188. Finally, for my best model of FFM, I used the fields as shown in Table 6 and added 20 more
numerical fields corresponding to tweet text embeddings. This resulted in uplift of both prauc to 0.736 and rce to 22.333.
The paramters for the best model after doing parameter tuning are shown in the Table 13. The results are summarized
in the Table 8.

“https://huggingface.co/transformers/

A combination of classification based methods for recommending tweets RecSysChallenge ’20, September 26, 2020, Virtual Event, Brazil

5.2.6 Best model for retweet-with-comment. retweet-with-comment was the hardest to predict as the signal was really
sparse with only 0.8% of the users having made the positive engagement in training data. I first tried with FM with
features in Table 6 . I gave prauc 0.024 and rce of -5.63 respectively. FFM with the same set of features gave me the
results of prauc of 0.018 and rce of 3.05. Then I applied feature selection methods to understand, which features are
most predictive of retweet-with-comment. My approach for optimizing for retweet-with-comment was FFM with features
as shown in Table 11. It gave the PRAUC of 0.047 and RCE of 6.07. Finally, a non-personalized approach of taking the
prior probability of retweet — with — comment gave me the better rank on the public leaderboard. All these results are

summarized in Table 9. The parameters for the FFM based model are described in Table 15.

6 FUTURE WORK

One thing I could have done better in this challenge was to be able to represent text in a better way. I did not use
topic modelling based techniques. A very straight forward approach I would like to apply is to run Latent Dirichlet
Allocation (LDA) [2] and add topics as features in classification based models, that I described earlier. Secondly, I wanted
to add content based recommendation scores as features in classification based approaches. Thirdly, I want to see if and
ensemble of models performs better. Additionally, I would like to see the performance of well known learning to rank
based methods such as BPR-MF [10] on this data. Finally, I would like to see the performances of recently proposed deep

learning based models for implicit feedback such as wide and deep learning [3] and Neural Factorization Machines [6].

REFERENCES
[1] Belli, L., Ktena, S.I., Tejani, A., Lung-Yut-Fon, A., Portman, F., Zhu, X., Xie, Y., Gupta, A., Bronstein, M., Deli¢, A., and Sottocornola, G. 2020.

Privacy-Preserving Recommender Systems Challenge on Twitter’s Home Timeline. arXiv:cs.SI/2004.13715

[2] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2001. Latent Dirichlet Allocation. In Advances in Neural Information Processing Systems 14
[Neural Information Processing Systems: Natural and Synthetic, NIPS 2001, December 3-8, 2001, Vancouver, British Columbia, Canada], Thomas G.
Dietterich, Suzanna Becker, and Zoubin Ghahramani (Eds.). MIT Press, 601-608. http://papers.nips.cc/paper/2070-latent-dirichlet-allocation

[3] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa
Ispir, Rohan Anil, Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, and Hemal Shah. 2016. Wide & Deep Learning for Recommender Systems.
In Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. 7-10.

[4] Corinna Cortes and Vladimir Vapnik. 1995. Support-Vector Networks. Mach. Learn. 20, 3 (1995), 273-297. https://doi.org/10.1007/BF00994018

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), Jill Burstein, Christy Doran, and Thamar
Solorio (Eds.). Association for Computational Linguistics, 4171-4186. https://doi.org/10.18653/v1/n19-1423

[6] Xiangnan He and Tat-Seng Chua. 2017. Neural Factorization Machines for Sparse Predictive Analytics. CoRR abs/1708.05027 (2017). arXiv:1708.05027
http://arxiv.org/abs/1708.05027

[7] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative Filtering for Implicit Feedback Datasets. In Proceedings of the 8th IEEE International
Conference on Data Mining (ICDM 2008), December 15-19, 2008, Pisa, Italy. IEEE Computer Society, 263-272. https://doi.org/10.1109/ICDM.2008.22

[8] Yu-Chin Juan, Yong Zhuang, Wei-Sheng Chin, and Chih-Jen Lin. 2016. Field-aware Factorization Machines for CTR Prediction. In Proceedings of
RecSys’16, Boston, MA, USA, September 15-19, 2016. 43-50.

[9] Steffen Rendle. 2010. Factorization Machines. In ICDM 2010, The 10th IEEE International Conference on Data Mining, Sydney, Australia, 14-17 December
2010, Geoffrey 1. Webb, Bing Liu, Chengqi Zhang, Dimitrios Gunopulos, and Xindong Wu (Eds.). IEEE Computer Society, 995-1000.

[10] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. 2009. BPR: Bayesian Personalized Ranking from Implicit Feedback.

In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence (UAI '09). AUAI Press, Arlington, Virginia, United States,
452-461.

https://arxiv.org/abs/cs.SI/2004.13715
http://papers.nips.cc/paper/2070-latent-dirichlet-allocation
https://doi.org/10.1007/BF00994018
https://doi.org/10.18653/v1/n19-1423
https://arxiv.org/abs/1708.05027
http://arxiv.org/abs/1708.05027
https://doi.org/10.1109/ICDM.2008.22

	1 Abstract
	2 Introduction
	3 Validation Procedure and Metrics
	3.1 Metrics
	3.2 Priors Baseline

	4 Content Based Recommendations using BERT Embedding
	5 Classification Based Models
	5.1 Factorization Machines
	5.2 Field-Aware Factorization Machines

	6 Future work
	References

